Visible to the public Biblio

Filters: Keyword is energy-consuming PoW mechanism  [Clear All Filters]
2020-02-24
Liu, Hongyang, Shen, Feng, Liu, Zhiqiang, Long, Yu, Liu, Zhen, Sun, Shifeng, Tang, Shuyang, Gu, Dawu.  2019.  A Secure and Practical Blockchain Scheme for IoT. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :538–545.
With features such as decentralization, consistency, tamper resistance, non-repudiation, and pseudonym, blockchain technology has the potential to strengthen the Internet of Things (IoT) significantly, thus opening an intriguing research area in the integration of blockchain and IoT. However, most existing blockchain schemes were not dedicated to the IoT ecosystem and hence could not meet the specific requirements of IoT. This paper aims to fix the gap. Inspired by Chainspace, a blockchain platform which could be applicable in IoT, VChain is proposed, a novel blockchain scheme suitable for IoT which is more secure, concrete, and practical compared with Chainspace. Specifically, in VChain, a two-layer BFT-based consensus protocol with HoneyBadger BFT protocol is proposed and a collective signature scheme as building blocks. The designs above allow for supporting faulty-shards-tolerance and asynchronous network model, which could not be sustained in Chainspace, and keeping high efficiency as well. Moreover, the sharding strategy presented in VChain, different from that in RapidChain, which adopts the energy-consuming PoW mechanism for sharding, is environmentfriendly and thus makes VChain fit for IoT well. Last but not least, VChain also inherits the merits of Chainspace to separate the execution and verification of smart contracts for privacy.