Visible to the public Biblio

Filters: Keyword is GridLAB-D software  [Clear All Filters]
2020-02-26
Vlachokostas, Alex, Prousalidis, John, Spathis, Dimosthenis, Nikitas, Mike, Kourmpelis, Theo, Dallas, Stefanos, Soghomonian, Zareh, Georgiou, Vassilis.  2019.  Ship-to-Grid Integration: Environmental Mitigation and Critical Infrastructure Resilience. 2019 IEEE Electric Ship Technologies Symposium (ESTS). :542–547.

The United States and European Union have an increasing number of projects that are engaging end-use devices for improved grid capabilities. Areas such as building-to-grid and vehicle-to-grid are simple examples of these advanced capabilities. In this paper, we present an innovative concept study for a ship-to-grid integration. The goal of this study is to simulate a two-way power flow between ship(s) and the grid with GridLAB-D for the port of Kyllini in Greece, where a ship-to-shore interconnection was recently implemented. Extending this further, we explore: (a) the ability of ships to meet their load demand needs, while at berth, by being supplied with energy from the electric grid and thus powering off their diesel engines; and (b) the ability of ships to provide power to critical loads onshore. As a result, the ship-to-grid integration helps (a) mitigate environmental pollutants from the ships' diesel engines and (b) provide resilience to nearby communities during a power disruption due to natural disasters or man-made threats.