Visible to the public Biblio

Filters: Keyword is ANFIS  [Clear All Filters]
2022-01-31
Sandhu, Amandeep Kaur, Batth, Ranbir Singh.  2021.  A Hybrid approach to identify Software Reusable Components in Software Intelligence. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :353–356.
Reusability is demarcated as the way of utilizing existing software components in software development. It plays a significant role in component-based software engineering. Extracting the components from the source code and checking the reusability factors is the most crucial part. Software Intelligence, a combination of data mining and artificial intelligence, helps to cope with the extraction and detection of reusability factor of the component. In this work prediction of reusability factor is considered. This paper proposes a hybrid PSO-NSGA III approach to detect whether the extracted component is reusable or not. The existing models lack in tuning the hyper parameters for prediction, which is considered in this work. The proposed approach was compared with four models, showing better outcomes in terms of performance metrics.
2020-03-02
Arifeen, Md Murshedul, Islam, Al Amin, Rahman, Md Mustafizur, Taher, Kazi Abu, Islam, Md.Maynul, Kaiser, M Shamim.  2019.  ANFIS based Trust Management Model to Enhance Location Privacy in Underwater Wireless Sensor Networks. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1–6.
Trust management is a promising alternative solution to different complex security algorithms for Underwater Wireless Sensor Networks (UWSN) applications due to its several resource constraint behaviour. In this work, we have proposed a trust management model to improve location privacy of the UWSN. Adaptive Neuro Fuzzy Inference System (ANFIS) has been exploited to evaluate trustworthiness of a sensor node. Also Markov Decision Process (MDP) has been considered. At each state of the MDP, a sensor node evaluates trust behaviour of forwarding node utilizing the FIS learning rules and selects a trusted node. Simulation has been conducted in MATLAB and simulation results show that the detection accuracy of trustworthiness is 91.2% which is greater than Knowledge Discovery and Data Mining (KDD) 99 intrusion detection based dataset. So, in our model 91.2% trustworthiness is necessary to be a trusted node otherwise it will be treated as a malicious or compromised node. Our proposed model can successfully eliminate the possibility of occurring any compromised or malicious node in the network.