Visible to the public Biblio

Filters: Keyword is counter value  [Clear All Filters]
2020-07-20
Nishida, Kanata, Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Security Evaluation of Counter Synchronization Method for CAN Against DoS Attack. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :166–167.
MAC using a counter value in message authentication for in-vehicle network prevents replay attack. When synchronization deviation of the counter value occurs between the sender and receiver, a message cannot be authenticated correctly because the generated MACs are different. Thus, a counter synchronization method has been proposed. In addition, injection and replay attack of a synchronization message for the synchronization method have been performed. However, DoS attack on the synchronization method has not been conducted. This study performs DoS attack in order to evaluate security of the synchronization method. Experimental results reveal the vulnerability of the synchronization method against DoS attack.
2020-03-04
Sadkhan, Sattar B., Yaseen, Basim S..  2019.  Hybrid Method to Implement a Parallel Search of the Cryptosystem Keys. 2019 International Conference on Advanced Science and Engineering (ICOASE). :204–207.

The current paper proposes a method to combine the theoretical concepts of the parallel processing created by the DNA computing and GA environments, with the effectiveness novel mechanism of the distinction and discover of the cryptosystem keys. Three-level contributions to the current work, the first is the adoption of a final key sequence mechanism by the principle of interconnected sequence parts, the second to exploit the principle of the parallel that provides GA in the search for the counter value of the sequences of the challenge to the mechanism of the discrimination, the third, the most important and broadening the breaking of the cipher, is the harmony of the principle of the parallelism that has found via the DNA computing to discover the basic encryption key. The proposed method constructs a combined set of files includes binary sequences produced from substitution of the guess attributes of the binary equations system of the cryptosystem, as well as generating files that include all the prospects of the DNA strands for all successive cipher characters, the way to process these files to be obtained from the first character file, where extract a key sequence of each sequence from mentioned file and processed with the binary sequences that mentioned the counter produced from GA. The aim of the paper is exploitation and implementation the theoretical principles of the parallelism that providing via biological environment with the new sequences recognition mechanism in the cryptanalysis.