Visible to the public Biblio

Filters: Keyword is flow monitoring  [Clear All Filters]
2020-07-06
Gries, Stefan, Ollesch, Julius, Gruhn, Volker.  2019.  Modeling Semantic Dependencies to Allow Flow Monitoring in Networks with Black-Box Nodes. 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). :14–17.
Cyber-Physical Systems are distributed, heterogeneous systems that communicate and exchange data over networks. This creates semantic dependencies between the individual components. In the event of an error, it is difficult to identify the source of an occurring error that is spread due to those underlying dependencies. Tools such as the Information Flow Monitor solve this problem, but require compliance with a protocol. Nodes that do not adhere to this protocol prevent errors from being tracked. In this paper, we present a way to bridge these black-box nodes with a dependency model and to still be able to use them in monitoring tools.
2020-03-12
Vieira, Leandro, Santos, Leonel, Gon\c calves, Ramiro, Rabadão, Carlos.  2019.  Identifying Attack Signatures for the Internet of Things: An IP Flow Based Approach. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.

At the time of more and more devices being connected to the internet, personal and sensitive information is going around the network more than ever. Thus, security and privacy regarding IoT communications, devices, and data are a concern due to the diversity of the devices and protocols used. Since traditional security mechanisms cannot always be adequate due to the heterogeneity and resource limitations of IoT devices, we conclude that there are still several improvements to be made to the 2nd line of defense mechanisms like Intrusion Detection Systems. Using a collection of IP flows, we can monitor the network and identify properties of the data that goes in and out. Since network flows collection have a smaller footprint than packet capturing, it makes it a better choice towards the Internet of Things networks. This paper aims to study IP flow properties of certain network attacks, with the goal of identifying an attack signature only by observing those properties.