Biblio
One of the biggest studies on public safety and tracking that has sparked a lot of interest in recent years is deep learning approach. Current public safety methods are existent for counting and detecting persons. But many issues such as aberrant occurring in public spaces are seldom detected and reported to raise an automated alarm. Our proposed method detects anomalies (deviation from normal events) from the video surveillance footages using deep learning and raises an alarm, if anomaly is found. The proposed model is trained to detect anomalies and then it is applied to the video recording of the surveillance that is used to monitor public safety. Then the video is assessed frame by frame to detect anomaly and then if there is match, an alarm is raised.
In this work, we consider the application of the nonstationary channel polarization theory on the wiretap channel model with non-stationary blocks. Particularly, we present a time-bit coding scheme which is a secure polar codes that constructed on the virtual bit blocks by using the non-stationary channel polarization theory. We have proven that this time-bit coding scheme achieves reliability, strong security and the secrecy capacity. Also, compared with regular secure polar coding methods, our scheme has a lower coding complexity for non-stationary channel blocks.
In this work, the algorithm of increasing the information security of a communication system with Orthogonal Frequency Division Multiplexing (OFDM) was achieved by using a discrete-nonlinear Duffing system with dynamic chaos. The main idea of increasing information security is based on scrambling input information on three levels. The first one is mixing up data order, the second is scrambling data values and the final is mixing symbols at the Quadrature Amplitude Modulation (QAM) plot constellation. Each level's activities were made with the use of pseudorandom numbers set, generated by the discrete-nonlinear Duffing system with dynamic chaos.
An oblivious signature is a digital signature with some property. The oblivious signature scheme has two parties, the signer and the receiver. First, the receiver can choose one and get one of n valid signatures without knowing the signer’s private key. Second, the signer does not know which signature is chosen by the receiver. In this paper, we propose the oblivious signature which is combined with blind signature and zero-knowledge set membership. The property of blind signature makes sure that the signer does not know the message of the signature by the receiver chosen, on the other hand, the property of the zero-knowledge set membership makes sure that the message of the signature by the receiver chosen is one of the set original messages.
Recently, federated learning (FL), as an advanced and practical solution, has been applied to deal with privacy-preserving issues in distributed multi-party federated modeling. However, most existing FL methods focus on the same privacy-preserving budget while ignoring various privacy requirements of participants. In this paper, we for the first time propose an algorithm (PLU-FedOA) to optimize the deep neural network of horizontal FL with personalized local differential privacy. For such considerations, we design two approaches: PLU, which allows clients to upload local updates under differential privacy-preserving of personally selected privacy level, and FedOA, which helps the server aggregates local parameters with optimized weight in mixed privacy-preserving scenarios. Moreover, we theoretically analyze the effect on privacy and optimization of our approaches. Finally, we verify PLU-FedOA on real-world datasets.
The main objective of the proposed work is to build a reliable and secure architecture for cloud servers where users may safely store and transfer their data. This platform ensures secure communication between the client and the server during data transfer. Furthermore, it provides a safe method for sharing and transferring files from one person to another. As a result, for ensuring safe data on cloud servers, this research work presents a secure architecture combining three DNA cryptography, HMAC, and a third party Auditor. In order to provide security by utilizing various strategies, a number of traditional and novel cryptographic methods are investigated. In the first step, data will be encrypted with the help of DNA cryptography, where the encoded document will be stored in the cloud server. In next step, create a HMAC value of encrypted file, which was stored on cloud by using secret key and sends to TPA. In addition, Third Party Auditor is used for authenticate the purity of stored documents in cloud at the time of verification TPA also create HMAC value from Cloud stored data and verify it. DNA-based cryptographic technique, hash based message authentic code and third party auditor will provide more secured framework for data security and integrity in cloud server.