Visible to the public Biblio

Filters: Keyword is Hard-coded credentials  [Clear All Filters]
2021-03-22
Kellogg, M., Schäf, M., Tasiran, S., Ernst, M. D..  2020.  Continuous Compliance. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :511–523.
Vendors who wish to provide software or services to large corporations and governments must often obtain numerous certificates of compliance. Each certificate asserts that the software satisfies a compliance regime, like SOC or the PCI DSS, to protect the privacy and security of sensitive data. The industry standard for obtaining a compliance certificate is an auditor manually auditing source code. This approach is expensive, error-prone, partial, and prone to regressions. We propose continuous compliance to guarantee that the codebase stays compliant on each code change using lightweight verification tools. Continuous compliance increases assurance and reduces costs. Continuous compliance is applicable to any source-code compliance requirement. To illustrate our approach, we built verification tools for five common audit controls related to data security: cryptographically unsafe algorithms must not be used, keys must be at least 256 bits long, credentials must not be hard-coded into program text, HTTPS must always be used instead of HTTP, and cloud data stores must not be world-readable. We evaluated our approach in three ways. (1) We applied our tools to over 5 million lines of open-source software. (2) We compared our tools to other publicly-available tools for detecting misuses of encryption on a previously-published benchmark, finding that only ours are suitable for continuous compliance. (3) We deployed a continuous compliance process at AWS, a large cloud-services company: we integrated verification tools into the compliance process (including auditors accepting their output as evidence) and ran them on over 68 million lines of code. Our tools and the data for the former two evaluations are publicly available.
2020-03-30
Verma, Rajat Singh, Chandavarkar, B. R., Nazareth, Pradeep.  2019.  Mitigation of hard-coded credentials related attacks using QR code and secured web service for IoT. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Hard-coded credentials such as clear text log-in id and password provided by the IoT manufacturers and unsecured ways of remotely accessing IoT devices are the major security concerns of industry and academia. Limited memory, power, and processing capabilities of IoT devices further worsen the situations in improving the security of IoT devices. In such scenarios, a lightweight security algorithm up to some extent can minimize the risk. This paper proposes one such approach using Quick Response (QR) code to mitigate hard-coded credentials related attacks such as Mirai malware, wreak havoc, etc. The QR code based approach provides non-clear text unpredictable login id and password. Further, this paper also proposes a secured way of remotely accessing IoT devices through modified https. The proposed algorithms are implemented and verified using Raspberry Pi 3 model B.