Biblio
The fingerprint sensor based on pMUTs was reported [1]. Spatial resolution of the image depends on the size of the acoustic source when a plane wave is used. If the size of the acoustic source is smaller, piezoelectric films with high dielectric constant are required. In this study, in order to obtain small acoustic source, we proposed Pb(Zrx Th-x)O3 (PZT) epitaxial transducers with high dielectric constant. PbTiO3 (PTO) epitaxial films were grown on conductive La-SrTiO3 (STO) substrate by RF magnetron sputtering. Longitudinal wave conversion loss of PTO transducers was measured by a network analyzer. The thermoplastic elastomer was used instead of real fingerprint. We confirmed that conversion loss of piezoelectric film/substrate structure was increased by contacting the elastomer due the change of reflection coefficient of the substrate bottom/elastomer interface. Minimum conversion loss images were obtained by mechanically scanning the soft probe on the transducer surface. We achieved the detection of the fingerprint phantom based on the elastomer in the GHz.
Wireless Sensor Networks (WSNs) are deployed to monitor the assets (endangered species) and report the locations of these assets to the Base Station (BS) also known as Sink. The hunter (adversary) attacks the network at one or two hops away from the Sink, eavesdrops the wireless communication links and traces back to the location of the asset to capture them. The existing solutions proposed to preserve the privacy of the assets lack in energy efficiency as they rely on random walk routing technique and fake packet injection technique so as to obfuscate the hunter from locating the assets. In this paper we present an energy efficient privacy preserved routing algorithm where the event (i.e., asset) detected nodes called as source nodes report the events' location information to the Base Station using phantom source (also known as phantom node) concept and a-angle anonymity concept. Routing is done using existing greedy routing protocol. Comparison through simulations shows that our solution reduces the energy consumption and delay while maintaining the same level of privacy as that of two existing popular techniques.