Visible to the public Biblio

Filters: Keyword is source anonymity  [Clear All Filters]
2017-12-12
Will, M. A., Ko, R. K. L., Schlickmann, S. J..  2017.  Anonymous Data Sharing Between Organisations with Elliptic Curve Cryptography. 2017 IEEE Trustcom/BigDataSE/ICESS. :1024–1031.

Promoting data sharing between organisations is challenging, without the added concerns over having actions traced. Even with encrypted search capabilities, the entities digital location and downloaded information can be traced, leaking information to the hosting organisation. This is a problem for law enforcement and government agencies, where any information leakage is not acceptable, especially for investigations. Anonymous routing is a technique to stop a host learning which agency is accessing information. Many related works for anonymous routing have been proposed, but are designed for Internet traffic, and are over complicated for internal usage. A streaming design for circuit creation is proposed using elliptic curve cryptography. Allowing for a simple anonymous routing solution, which provides fast performance with source and destination anonymity to other organisations.

2015-05-04
Xiaoguang Niu, Chuanbo Wei, Weijiang Feng, Qianyuan Chen.  2014.  OSAP: Optimal-cluster-based source anonymity protocol in delay-sensitive wireless sensor networks. Wireless Communications and Networking Conference (WCNC), 2014 IEEE. :2880-2885.

For wireless sensor networks deployed to monitor and report real events, event source-location privacy (SLP) is a critical security property. Previous work has proposed schemes based on fake packet injection such as FitProbRate and TFS, to realize event source anonymity for sensor networks under a challenging attack model where a global attacker is able to monitor the traffic in the entire network. Although these schemes can well protect the SLP, there exists imbalance in traffic or delay. In this paper, we propose an Optimal-cluster-based Source Anonymity Protocol (OSAP), which can achieve a tradeoff between network traffic and real event report latency through adjusting the transmission rate and the radius of unequal clusters, to reduce the network traffic. The simulation results demonstrate that OSAP can significantly reduce the network traffic and the delay meets the system requirement.