Biblio
In the Internet of Things (IoT), devices can interconnect and communicate autonomously, which requires devices to authenticate each other to exchange meaningful information. Otherwise, these things become vulnerable to various attacks. The conventional security protocols are not suitable for IoT applications due to the high computation and storage demand. Therefore, we proposed a blockchain-enabled secure storage and communication scheme for IoT applications, called BSS. The scheme ensures identification, authentication, and data integrity. Our scheme uses the security advantages of blockchain and helps to create safe zones (trust batch) where authenticated objects interconnect securely and do communication. A secure and robust trust mechanism is employed to build these batches, where each device has to authenticate itself before joining the trust batch. The obtained results satisfy the IoT security requirements with 60% reduced computation, storage and communication cost compared with state-of-the-art schemes. BSS also withstands various cyberattacks such as impersonation, message replay, man-in-the-middle, and botnet attacks.
The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.
This paper presents an analysis of Rabin-P encryption scheme on microprocessor platform in term of runtime and energy consumption. A microprocessor is one of the devices utilized in the Internet of Things (IoT) structure. Therefore, in this work, the microprocessor selected is the Raspberry Pi that is powered with a smaller version of the Linux operating system for embedded devices, the Raspbian OS. A comparative analysis is then conducted for Rabin-p and RSA-OAEP cryptosystem in the Raspberry Pi setup. A conclusion can be made that Rabin-p performs faster in comparison to the RSA-OAEP cryptosystem in the microprocessor platform. Rabin-p can improve decryption efficiency by using only one modular exponentiation while produces a unique message after the decryption process.