Biblio
The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.
Recent advances in Cross-Technology Communication (CTC) enable the coexistence and collaboration among heterogeneous wireless devices operating in the same ISM band (e.g., Wi-Fi, ZigBee, and Bluetooth in 2.4 GHz). However, state-of-the-art CTC schemes are vulnerable to spoofing attacks since there is no practice authentication mechanism yet. This paper proposes a scheme to enable the spoofing attack detection for CTC in heterogeneous wireless networks by using physical layer information. First, we propose a model to detect ZigBee packets and measure the corresponding Received Signal Strength (RSS) on Wi-Fi devices. Then, we design a collaborative mechanism between Wi-Fi and ZigBee devices to detect the spoofing attack. Finally, we implement and evaluate our methods through experiments on commercial off-the- shelf (COTS) Wi-Fi and ZigBee devices. Our results show that it is possible to measure the RSS of ZigBee packets on Wi-Fi device and detect spoofing attack with both a high detection rate and a low false positive rate in heterogeneous wireless networks.
With a large number of sensors and control units in networked systems, distributed support vector machines (DSVMs) play a fundamental role in scalable and efficient multi-sensor classification and prediction tasks. However, DSVMs are vulnerable to adversaries who can modify and generate data to deceive the system to misclassification and misprediction. This work aims to design defense strategies for DSVM learner against a potential adversary. We use a game-theoretic framework to capture the conflicting interests between the DSVM learner and the attacker. The Nash equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the resilience of the machine learning through dynamic distributed algorithms. We develop a secure and resilient DSVM algorithm with rejection method, and show its resiliency against adversary with numerical experiments.
In this paper, a mutual authentication protocol based on ECC is designed for RFID systems. This protocol is described in detail and the performance of this protocol is analyzed. The results show that the protocol has many advantages, such as mutual authentication, confidentiality, anonymity, availability, forward security, scalability and so on, which can resist camouflage attacks, tracking attacks, denial of service attacks, system internal attack.