Visible to the public Biblio

Filters: Keyword is environmental monitoring  [Clear All Filters]
2021-02-15
Reshma, S., Shaila, K., Venugopal, K. R..  2020.  DEAVD - Data Encryption and Aggregation using Voronoi Diagram for Wireless Sensor Networks. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :635–638.
Wireless Sensor Networks (WSNs) are applied in environmental monitoring, military surveillance, etc., whereas these applications focuses on providing security for sensed data and the nodes are available for a long time. Hence, we propose DEAVD protocol for secure data exchange with limited usage of energy. The DEAVD protocol compresses data to reduces the energy consumption and implements an energy efficient encryption and decryption technique using voronoi diagram paradigm. Thus, there is an improvement in the proposed protocol with respect to security due to the concept adapted during data encryption and aggregation.
2020-12-15
Laso, P. Merino, Brosset, D., Giraud, M..  2018.  Secured Architecture for Unmanned Surface Vehicle Fleets Management and Control. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :373—375.

Cyber-physical systems contribute to building new infrastructure in the modern world. These systems help realize missions reducing costs and risks. The seas being a harsh and dangerous environment are a perfect application of them. Unmanned Surface vehicles (USV) allow realizing normal and new tasks reducing risk and cost i.e. surveillance, water cleaning, environmental monitoring or search and rescue operations. Also, as they are unmanned vehicles they can extend missions to unpleasing and risky weather conditions. The novelty of these systems makes that new command and control platforms need to be developed. In this paper, we describe an implemented architecture with 5 separated levels. This structure increases security by defining roles and by limiting information exchanges.

2020-07-24
Munsyi, Sudarsono, Amang, Harun Al Rasvid, M. Udin.  2018.  An Implementation of Data Exchange in Environmental Monitoring Using Authenticated Attribute-Based Encryption with Revocation. 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC). :359—366.
Internet of things era grown very rapidly in Industrial Revolution 4.0, there are many researchers use the Wireless Sensor Network (WSN) technology to obtain the data for environmental monitoring. The data obtained from WSN will be sent to the Data Center, where users can view and collect all of data from the Data Center using end devices such as personal computer, laptop, and mobile phone. The Data Center would be very dangerous, because everyone can intercept, track and even modify the data. Security requirement to ensure the confidentiality all of stored data in the data center and give the authenticity in data has not changed during the collection process. Ciphertext Policy Attribute-Based Encryption (CP-ABE) can become a solution to secure the confidentiality for all of data. Only users with appropriate rule of policy can get the original data. To guarantee there is no changes during the collection process of the data then require the time stamp digital signature for securing the data integrity. To protect the confidentiality and data integrity, we propose a security mechanism using CP-ABE with user revocation and Time Stamp Digital Signature using Elliptic Curve Cryptography (ECC) 384 bits. Our system can do the revocation for the users who did the illegal access. Our system is not only securing the data but also providing the guarantee that is no changes during the collection process of the data from the Data Center.
2020-01-20
Warabino, Takayuki, Suzuki, Yusuke, Miyazawa, Masanori.  2019.  ROS-based Robot Development Toward Fully Automated Network Management. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.

While the introduction of the softwarelization technologies such as SDN and NFV transfers main focus of network management from hardware to software, the network operators still have to care for a lot of network and computing equipment located in the network center. Toward fully automated network management, we believe that robotic approach will be significant, meaning that robot will care for the physical equipment on behalf of human. This paper explains our experience and insight gained throughout development of a network management robot. We utilize ROS(Robot Operating System) which is a powerful platform for robot development and secures the ease of development and expandability. Our roadmap of the network management robot is also shown as well as three use cases such as environmental monitoring, operator assistance and autonomous maintenance of the equipment. Finally, the paper briefly explains experimental results conducted in a commercial network center.

2018-05-30
Liang, L., Liu, Y., Yao, Y., Yang, T., Hu, Y., Ling, C..  2017.  Security Challenges and Risk Evaluation Framework for Industrial Wireless Sensor Networks. 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT). :0904–0907.

Due to flexibility, low cost and rapid deployment, wireless sensor networks (WSNs)have been drawing more and more interest from governments, researchers, application developers, and manufacturers in recent years. Nowadays, we are in the age of industry 4.0, in which the traditional industrial control systems will be connected with each other and provide intelligent manufacturing. Therefore, WSNs can play an extremely crucial role to monitor the environment and condition parameters for smart factories. Nevertheless, the introduction of the WSNs reveals the weakness, especially for industrial applications. Through the vulnerability of IWSNs, the latent attackers were likely to invade the information system. Risk evaluation is an overwhelmingly efficient method to reduce the risk of information system in order to an acceptable level. This paper aim to study the security issues about IWSNs as well as put forward a practical solution to evaluate the risk of IWSNs, which can guide us to make risk evaluation process and improve the security of IWSNs through appropriate countermeasures.

2015-05-04
Shahare, P.C., Chavhan, N.A..  2014.  An Approach to Secure Sink Node's Location Privacy in Wireless Sensor Networks. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :748-751.

Wireless Sensor Network has a wide range of applications including environmental monitoring and data gathering in hostile environments. This kind of network is easily leaned to different external and internal attacks because of its open nature. Sink node is a receiving and collection point that gathers data from the sensor nodes present in the network. Thus, it forms bridge between sensors and the user. A complete sensor network can be made useless if this sink node is attacked. To ensure continuous usage, it is very important to preserve the location privacy of sink nodes. A very good approach for securing location privacy of sink node is proposed in this paper. The proposed scheme tries to modify the traditional Blast technique by adding shortest path algorithm and an efficient clustering mechanism in the network and tries to minimize the energy consumption and packet delay.