Visible to the public Biblio

Filters: Keyword is radio access networks  [Clear All Filters]
2021-04-08
Chrysikos, T., Dagiuklas, T., Kotsopoulos, S..  2010.  Wireless Information-Theoretic Security for moving users in autonomic networks. 2010 IFIP Wireless Days. :1–5.
This paper studies Wireless Information-Theoretic Security for low-speed mobility in autonomic networks. More specifically, the impact of user movement on the Probability of Non-Zero Secrecy Capacity and Outage Secrecy Capacity for different channel conditions has been investigated. This is accomplished by establishing a link between different user locations and the boundaries of information-theoretic secure communication. Human mobility scenarios are considered, and its impact on physical layer security is examined, considering quasi-static Rayleigh channels for the fading phenomena. Simulation results have shown that the Secrecy Capacity depends on the relative distance of legitimate and illegitimate (eavesdropper) users in reference to the given transmitter.
2021-02-16
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2020-11-17
Hossain, M. S., Ramli, M. R., Lee, J. M., Kim, D.-S..  2019.  Fog Radio Access Networks in Internet of Battlefield Things (IoBT) and Load Balancing Technology. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :750—754.

The recent trend of military is to combined Internet of Things (IoT) knowledge to their field for enhancing the impact in battlefield. That's why Internet of battlefield (IoBT) is our concern. This paper discusses how Fog Radio Access Network(F-RAN) can provide support for local computing in Industrial IoT and IoBT. F-RAN can play a vital role because of IoT devices are becoming popular and the fifth generation (5G) communication is also an emerging issue with ultra-low latency, energy consumption, bandwidth efficiency and wide range of coverage area. To overcome the disadvantages of cloud radio access networks (C-RAN) F-RAN can be introduced where a large number of F-RAN nodes can take part in joint distributed computing and content sharing scheme. The F-RAN in IoBT is effective for enhancing the computing ability with fog computing and edge computing at the network edge. Since the computing capability of the fog equipment are weak, to overcome the difficulties of fog computing in IoBT this paper illustrates some challenging issues and solutions to improve battlefield efficiency. Therefore, the distributed computing load balancing problem of the F-RAN is researched. The simulation result indicates that the load balancing strategy has better performance for F-RAN architecture in the battlefield.

2020-09-28
Park, Seok-Hwan, Simeone, Osvaldo, Shamai Shitz, Shlomo.  2018.  Optimizing Spectrum Pooling for Multi-Tenant C-RAN Under Privacy Constraints. 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1–5.
This work studies the optimization of spectrum pooling for the downlink of a multi-tenant Cloud Radio Access Network (C-RAN) system in the presence of inter-tenant privacy constraints. The spectrum available for downlink transmission is partitioned into private and shared subbands, and the participating operators cooperate to serve the user equipments (UEs) on the shared subband. The network of each operator consists of a cloud processor (CP) that is connected to proprietary radio units (RUs) by means of finite-capacity fronthaul links. In order to enable inter-operator cooperation, the CPs of the participating operators are also connected by finite-capacity backhaul links. Inter-operator cooperation may hence result in loss of privacy. The problem of optimizing the bandwidth allocation, precoding, and fronthaul/backhaul compression strategies is tackled under constraints on backhaul and fronthaul capacity, as well as on per-RU transmit power and inter-onerator privacy.
2020-06-15
Kipchuk, Feodosiy, Sokolov, Volodymyr, Buriachok, Volodymyr, Kuzmenko, Lidia.  2019.  Investigation of Availability of Wireless Access Points based on Embedded Systems. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :1–5.
The paper presents the results of load testing of embedded hardware platforms for Internet of Things solutions. Analyzed the available hardware. The operating systems from different manufacturers were consolidated into a single classification, and for the two most popular, load testing was performed by an external and internal wireless network adapter. Developed its own software solution based on the Python programming language. The number of wireless subscribers ranged from 7 to 14. Experimental results will be useful in deploying wireless infrastructure for small commercial and scientific wireless networks.
2020-03-02
Ranaweera, Pasika, Jurcut, Anca Delia, Liyanage, Madhusanka.  2019.  Realizing Multi-Access Edge Computing Feasibility: Security Perspective. 2019 IEEE Conference on Standards for Communications and Networking (CSCN). :1–7.
Internet of Things (IoT) and 5G are emerging technologies that prompt a mobile service platform capable of provisioning billions of communication devices which enable ubiquitous computing and ambient intelligence. These novel approaches are guaranteeing gigabit-level bandwidth, ultra-low latency and ultra-high storage capacity for their subscribers. To achieve these limitations, ETSI has introduced the paradigm of Multi-Access Edge Computing (MEC) for creating efficient data processing architecture extending the cloud computing capabilities in the Radio Access Network (RAN). Despite the gained enhancements to the mobile network, MEC is subjected to security challenges raised from the heterogeneity of IoT services, intricacies in integrating virtualization technologies, and maintaining the performance guarantees of the mobile networks (i.e. 5G). In this paper, we are identifying the probable threat vectors in a typical MEC deployment scenario that comply with the ETSI standards. We analyse the identified threat vectors and propose solutions to mitigate them.
2020-01-21
Zhou, Lin, Feng, Jing, He, Haiguang, Mao, Zhijie, Chen, Yingmei, Gao, Mei, He, Zhuzhen.  2019.  A Construction Method of Security Mechanism Requirement for Wireless Access System Based on CC Standard. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :369–372.

Aiming at the incomplete and incomplete security mechanism of wireless access system in emergency communication network, this paper proposes a security mechanism requirement construction method for wireless access system based on security evaluation standard. This paper discusses the requirements of security mechanism construction in wireless access system from three aspects: the definition of security issues, the construction of security functional components and security assurance components. This method can comprehensively analyze the security threats and security requirements of wireless access system in emergency communication network, and can provide correct and reasonable guidance and reference for the establishment of security mechanism.

2019-03-25
Ali-Tolppa, J., Kocsis, S., Schultz, B., Bodrog, L., Kajo, M..  2018.  SELF-HEALING AND RESILIENCE IN FUTURE 5G COGNITIVE AUTONOMOUS NETWORKS. 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K). :1–8.
In the Self-Organizing Networks (SON) concept, self-healing functions are used to detect, diagnose and correct degraded states in the managed network functions or other resources. Such methods are increasingly important in future network deployments, since ultra-high reliability is one of the key requirements for the future 5G mobile networks, e.g. in critical machine-type communication. In this paper, we discuss the considerations for improving the resiliency of future cognitive autonomous mobile networks. In particular, we present an automated anomaly detection and diagnosis function for SON self-healing based on multi-dimensional statistical methods, case-based reasoning and active learning techniques. Insights from both the human expert and sophisticated machine learning methods are combined in an iterative way. Additionally, we present how a more holistic view on mobile network self-healing can improve its performance.
2015-05-06
Daesung Choi, Sungdae Hong, Hyoung-Kee Choi.  2014.  A group-based security protocol for Machine Type Communications in LTE-Advanced. Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. :161-162.

We propose Authentication and Key Agreement (AKA) for Machine Type Communications (MTC) in LTE-Advanced. This protocol is based on an idea of grouping devices so that it would reduce signaling congestion in the access network and overload on the single authentication server. We verified that this protocol is designed to be secure against many attacks by using a software verification tool. Furthermore, performance evaluation suggests that this protocol is efficient with respect to authentication overhead and handover delay.
 

Goseva-Popstojanova, K., Dimitrijevikj, A..  2014.  Distinguishing between Web Attacks and Vulnerability Scans Based on Behavioral Characteristics. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :42-48.

The number of vulnerabilities and reported attacks on Web systems are showing increasing trends, which clearly illustrate the need for better understanding of malicious cyber activities. In this paper we use clustering to classify attacker activities aimed at Web systems. The empirical analysis is based on four datasets, each in duration of several months, collected by high-interaction honey pots. The results show that behavioral clustering analysis can be used to distinguish between attack sessions and vulnerability scan sessions. However, the performance heavily depends on the dataset. Furthermore, the results show that attacks differ from vulnerability scans in a small number of features (i.e., session characteristics). Specifically, for each dataset, the best feature selection method (in terms of the high probability of detection and low probability of false alarm) selects only three features and results into three to four clusters, significantly improving the performance of clustering compared to the case when all features are used. The best subset of features and the extent of the improvement, however, also depend on the dataset.

2015-05-04
Toukabri, T., Said, A.M., Abd-Elrahman, E., Afifi, H..  2014.  Cellular Vehicular Networks (CVN): ProSe-Based ITS in Advanced 4G Networks. Mobile Ad Hoc and Sensor Systems (MASS), 2014 IEEE 11th International Conference on. :527-528.

LTE-based Device-to-Device (D2D) communications have been envisioned as a new key feature for short range wireless communications in advanced and beyond 4G networks. We propose in this work to exploit this novel concept of D2D as a new alternative for Intelligent Transportation Systems (ITS) Vehicle-to-Vehicle/Infrastructure (V2X) communications in next generation cellular networks. A 3GPP standard architecture has been recently defined to support Proximity Services (ProSe) in the LTE core network. Taking into account the limitations of this latter and the requirements of ITS services and V2X communications, we propose the CVN solution as an enhancement to the ProSe architecture in order to support hyper-local ITS services. CVN provides a reliable and scalable LTE-assisted opportunistic model for V2X communications through a distributed ProSe architecture. Using a hybrid clustering approach, vehicles are organized into dynamic clusters that are formed and managed by ProSe Cluster Heads which are elected centrally by the CVN core network. ITS services are deemed as Proximity Services and benefit from the basic ProSe discovery, authorization and authentication mechanisms. The CVN solution enhances V2V communication delays and overhead by reducing the need for multi-hop geo-routing. Preliminary simulation results show that the CVN solution provides short setup times and improves ITS communication delays.
 

Shin-Ming Cheng, Cheng-Han Ho, Shannon Chen, Shih-Hao Chang.  2014.  Distributed anonymous authentication in heterogeneous networks. Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International. :505-510.

Nowadays, the design of a secure access authentication protocol in heterogeneous networks achieving seamless roaming across radio access technologies for mobile users (MUs) is a major technical challenge. This paper proposes a Distributed Anonymous Authentication (DAA) protocol to resolve the problems of heavy signaling overheads and long signaling delay when authentication is executed in a centralized manner. By applying MUs and point of attachments (PoAs) as group members, the adopted group signature algorithms provide identity verification directly without sharing secrets in advance, which significantly reduces signaling overheads. Moreover, MUs sign messages on behalf of the group, so that anonymity and unlinkability against PoAs are provided and thus privacy is preserved. Performance analysis confirm the advantages of DAA over existing solutions.