Biblio
Filters: Keyword is fusion center [Clear All Filters]
On the Impact of SSDF Attacks in Hard Combination Schemes in Cognitive Radio Networks. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :19–24.
.
2020. One of the critical threats menacing the Cooperative Spectrum Sensing (CSS) in Cognitive Radio Networks (CRNs) is the Spectrum Sensing Data Falsification (SSDF) reports, which can deceive the decision of Fusion Center (FC) about the Primary User (PU) spectrum accessibility. In CSS, each CR user performs Energy Detection (ED) technique to detect the status of licensed frequency bands of the PU. This paper investigates the performance of different hard-decision fusion schemes (OR-rule, AND-rule, and MAJORITY-rule) in the presence of Always Yes and Always No Malicious User (AYMU and ANMU) over Rayleigh and Gaussian channels. More precisely, comparative study is conducted to evaluate the impact of such malicious users in CSS on the performance of various hard data combining rules in terms of miss detection and false alarm probabilities. Furthermore, computer simulations are carried out to show that the hard-decision fusion scheme with MAJORITY-rule is the best among hard-decision combination under AYMU attacks, OR-rule has the best detection performance under ANMU.
Combined Approach to SSDF-Attacks Mitigation in Cognitive Radio Networks. 2020 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
.
2020. Cognitive radio systems aim to solve the issue of spectrum scarcity through implementation of dynamic spectrum management and cooperative spectrum access. However, the structure of such systems introduced unique types of vulnerabilities and attacks, one of which is spectrum sensing data falsification attack (SSDF). In such attacks malicious users provide incorrect observations to the fusion center of the system, which may result in severe quality of service degradation and interference for licensed users. In this paper we investigate this type of attacks and propose a combined approach to their mitigation. On the first step a reputational method is used to isolate the initially untrustworthy nodes, on the second step specialized q-out-of-m fusion rule is utilized to mitigate the remains of attack. In this paper we present theoretical analysis of the proposed combined method.
A Stochastic based Physical Layer Security in Cognitive Radio Networks: Cognitive Relay to Fusion Center. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.
.
2019. Cognitive radio networks (CRNs) are found to be, without difficulty wide-open to external malicious threats. Secure communication is an important prerequisite for forthcoming fifth-generation (5G) systems, and CRs are not exempt. A framework for developing the accomplishable benefits of physical layer security (PLS) in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN the spectrum sensing data from secondary users (SU) are collected by a fusion center (FC) with the assistance of access points (AP) as cognitive relays, and when malicious eavesdropping SU are listening. In this paper we focus on the secure transmission of active APs relaying their spectrum sensing data to the FC. Closed expressions for the average secrecy rate are presented. Analytical formulations and results substantiate our analysis and demonstrate that multiple antennas at the APs is capable of improving the security of an AF-CSSCRN. The obtained numerical results also show that increasing the number of FCs, leads to an increase in the secrecy rate between the AP and its correlated FC.
A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :197—202.
.
2019. In this paper, a framework for capitalizing on the potential benefits of physical layer security in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN network the sensing data from secondary users (SUs) are collected by a fusion center (FC) with the help of access points (AP) as relays, and when malicious eavesdropping secondary users (SUs) are listening. We focus on the secure transmission of active SUs transmitting their sensing data to the AP. Closed expressions for the average secrecy rate are presented. Numerical results corroborate our analysis and show that multiple antennas at the APs can enhance the security of the AF-CSS-CRN. The obtained numerical results show that average secrecy rate between the AP and its correlated FC decreases when the number of AP is increased. Nevertheless, we find that an increase in the number of AP initially increases the overall average secrecy rate, with a perilous value at which the overall average secrecy rate then decreases. While increasing the number of active SUs, there is a decrease in the secrecy rate between the sensor and its correlated AP.