Biblio
Security challenges are the most important obstacles for the advancement of IT-based on-demand services and cloud computing as an emerging technology. Lack of coincidence in identity management models based on defined policies and various security levels in different cloud servers is one of the most challenging issues in clouds. In this paper, a policy- based user authentication model has been presented to provide a reliable and scalable identity management and to map cloud users' access requests with defined polices of cloud servers. In the proposed schema several components are provided to define access policies by cloud servers, to apply policies based on a structural and reliable ontology, to manage user identities and to semantically map access requests by cloud users with defined polices. Finally, the reliability and efficiency of this policy-based authentication schema have been evaluated by scientific performance, security and competitive analysis. Overall, the results show that this model has met defined demands of the research to enhance the reliability and efficiency of identity management in cloud computing environments.
Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies; but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.
Cloud computing is a remarkable model for permitting on-demand network access to an elastic collection of configurable adaptive resources and features including storage, software, infrastructure, and platform. However, there are major concerns about security-related issues. A very critical security function is user authentication using passwords. Although many flaws have been discovered in password-based authentication, it remains the most convenient approach that people continue to utilize. Several schemes have been proposed to strengthen its effectiveness such as salted hashes, one-time password (OTP), single-sign-on (SSO) and multi-factor authentication (MFA). This study proposes a new authentication mechanism by combining user's password and modified characters of CAPTCHA to generate a passkey. The modification of the CAPTCHA depends on a secret agreed upon between the cloud provider and the user to employ different characters for some characters in the CAPTCHA. This scheme prevents various attacks including short-password attack, dictionary attack, keylogger, phishing, and social engineering. Moreover, it can resolve the issue of password guessing and the use of a single password for different cloud providers.
Growing numbers of ubiquitous electronic devices and services motivate the need for effortless user authentication and identification. While biometrics are a natural means of achieving these goals, their use poses privacy risks, due mainly to the difficulty of preventing theft and abuse of biometric data. One way to minimize information leakage is to derive biometric keys from users' raw biometric measurements. Such keys can be used in subsequent security protocols and ensure that no sensitive biometric data needs to be transmitted or permanently stored. This paper is the first attempt to explore the use of human body impedance as a biometric trait for deriving secret keys. Building upon Randomized Biometric Templates as a key generation scheme, we devise a mechanism that supports consistent regeneration of unique keys from users' impedance measurements. The underlying set of biometric features are found using a feature learning technique based on Siamese networks. Compared to prior feature extraction methods, the proposed technique offers significantly improved recognition rates in the context of key generation. Besides computing experimental error rates, we tailor a known key guessing approach specifically to the used key generation scheme and assess security provided by the resulting keys. We give a very conservative estimate of the number of guesses an adversary must make to find a correct key. Results show that the proposed key generation approach produces keys comparable to those obtained by similar methods based on other biometrics.
We are confronted with the threat from the theft of user-id / password information caused by phishing attacks. Now authentication by using the user-id and password is no longer safe. We can use the PKI-based authentication as a safer authentication mechanism. In our university, Japan Advanced Institute of Science and Technology (JAIST), we deployed On Demand Digital Certificate Issuing System for our users, and employ the PKI-based client certificates for log-on to web application, connecting to wireless network (including eduroam), using VPN service, and email sender signing. In addition, National In-stitute of Information (NII), which are providing common ICT infrastructure services for Japanese universities and institutes, started a service to issue client certificates in this year. So use of the electronic certificates will become more popular within a few years in Japan. However, there are not so enough cases deploying the electronic certificate based authentication in University infrastructure, we still has many tips and issues on operating this. In this paper, we introduce the use case of the electronic certificate in JAIST, the challenges and issues, and consider the future prospects.
Integrity of image data plays an important role in data communication. Image data contain confidential information so it is very important to protect data from intruder. When data is transmitted through the network, there may be possibility that data may be get lost or damaged. Existing system does not provide all functionality for securing image during transmission. i.e image compression, encryption and user authentication. In this paper hybrid cryptosystem is proposed in which biometric fingerprint is used for key generation which is further useful for encryption purpose. Secret fragment visible mosaic image method is used for secure transmission of image. For reducing the size of image lossless compression technique is used which leads to the fast transmission of image data through transmission channel. The biometric fingerprint is useful for authentication purpose. Biometric method is more secure method of authentication because it requires physical presence of human being and it is untraceable.
Android "Health-DR." is innovative idea for ambulatory appliances. In rapid developing technology, we are providing "Health-DR." application for the insurance agent, dispensary, patients, physician, annals management (security) for annals. So principally, the ample of record are maintain in to the hospitals. The application just needs to be installed in the customer site with IT environment. Main purpose of our application is to provide the healthy environment to the patient. Our cream focus is on the "Health-DR." application meet to the patient regiment. For the personal use of member, we provide authentication service strategy for "Health-DR." application. Prospective strategy includes: Professional Authentications (User Authentication) by doctor to the patient, actuary and dispensary. Remote access is available to the medical annals, doctor affability and patient affability. "Health-DR." provides expertness anytime and anywhere. The application is middleware to isolate the information from affability management, client discovery and transit of database. Annotations of records are kept in the bibliography. Mainly, this paper focuses on the conversion of E-Health application with flexible surroundings.
Cloud computing is one of the emerging computing technology where costs are directly proportional to usage and demand. The advantages of this technology are the reasons of security and privacy problems. The data belongs to the users are stored in some cloud servers which is not under their own control. So the cloud services are required to authenticate the user. In general, most of the cloud authentication algorithms do not provide anonymity of the users. The cloud provider can track the users easily. The privacy and authenticity are two critical issues of cloud security. In this paper, we propose a secure anonymous authentication method for cloud services using identity based group signature which allows the cloud users to prove that they have privilege to access the data without revealing their identities.
In large-scale systems, user authentication usually needs the assistance from a remote central authentication server via networks. The authentication service however could be slow or unavailable due to natural disasters or various cyber attacks on communication channels. This has raised serious concerns in systems which need robust authentication in emergency situations. The contribution of this paper is two-fold. In a slow connection situation, we present a secure generic multi-factor authentication protocol to speed up the whole authentication process. Compared with another generic protocol in the literature, the new proposal provides the same function with significant improvements in computation and communication. Another authentication mechanism, which we name stand-alone authentication, can authenticate users when the connection to the central server is down. We investigate several issues in stand-alone authentication and show how to add it on multi-factor authentication protocols in an efficient and generic way.
In recent years, with growing demands towards big data application, various research on context-awareness has once again become active. This paper proposes a new type of context-aware user authentication that controls the authentication level of users, using the context of “physical trust relationship” that is built between users by visual contact. In our proposal, the authentication control is carried out by two mechanisms; “i-Contact” and “k-Contact”. i-Contact is the mechanism that visually confirms the user (owner of a mobile device) using the surrounding users' eyes. The authenticity of users can be reliably assessed by the people (witnesses), even when the user exhibits ambiguous behavior. k-Contact is the mechanism that dynamically changes the authentication level of each user using the context information collected through i-Contact. Once a user is authenticated by eyewitness reports, the user is no longer prompted for a password to unlock his/her mobile device and/or to access confidential resources. Thus, by leveraging the proposed authentication system, the usability for only trusted users can be securely enhanced. At the same time, our proposal anticipates the promotion of physical social communication as face-to-face communication between users is triggered by the proposed authentication system.
User authentication depends largely on the concept of passwords. However, users find it difficult to remember alphanumerical passwords over time. When user is required to choose a secure password, they tend to choose an easy, short and insecure password. Graphical password method is proposed as an alternative solution to text-based alphanumerical passwords. The reason of such proposal is that human brain is better in recognizing and memorizing pictures compared to traditional alphanumerical string. Therefore, in this paper, we propose a conceptual framework to better understand the user performance for new high-end graphical password method. Our proposed framework is based on hybrid approach combining different features into one. The user performance experimental analysis pointed out the effectiveness of the proposed framework.
In cloud computing environments, the user authentication scheme is an important security tool because it provides the authentication, authorization, and accounting for cloud users. Therefore, many user authentication schemes for cloud computing have been proposed in recent years. However, we find that most of the previous authentication schemes have some security problems. Besides, it cannot be implemented in cloud computing. To solve the above problems, we propose a new ID-based user authentication scheme for cloud computing in this paper. Compared with the related works, the proposed scheme has higher security levels and lower computation costs. In addition, it can be easily applied to cloud computing environments. Therefore, the proposed scheme is more efficient and practical than the related works.
Cloud computing is a new paradigm and emerged technology for hosting and delivering resources over a network such as internet by using concepts of virtualization, processing power and storage. However, many challenging issues are still unclear in cloud-based environments and decrease the rate of reliability and efficiency for service providers and users. User Authentication is one of the most challenging issues in cloud-based environments and according to this issue this paper proposes an efficient user authentication model that involves both of defined phases during registration and accessing processes. Geo Detection and Digital Signature Authorization (GD2SA) is a user authentication tool for provisional access permission in cloud computing environments. The main aim of GD2SA is to compare the location of an un-registered device with the location of the user by using his belonging devices (e.g. smart phone). In addition, this authentication algorithm uses the digital signature of account owner to verify the identity of applicant. This model has been evaluated in this paper according to three main parameters: efficiency, scalability, and security. In overall, the theoretical analysis of the proposed model showed that it can increase the rate of efficiency and reliability in cloud computing as an emerging technology.
User authentication is an important security mechanism that allows mobile users to be granted access to roaming service offered by the foreign agent with assistance of the home agent in mobile networks. While security-related issues have been well studied, how to preserve user privacy in this type of protocols still remains an open problem. In this paper, we revisit the privacy-preserving two-factor authentication scheme presented by Li et al. at WCNC 2013. We show that, despite being armed with a formal security proof, this scheme actually cannot achieve the claimed feature of user anonymity and is insecure against offline password guessing attacks, and thus, it is not recommended for practical applications. Then, we figure out how to fix these identified drawbacks, and suggest an enhanced scheme with better security and reasonable efficiency. Further, we conjecture that under the non-tamper-resistant assumption of the smart cards, only symmetric-key techniques are intrinsically insufficient to attain user anonymity.