Visible to the public Biblio

Filters: Keyword is network throughput  [Clear All Filters]
2020-10-29
Kumar, Sushil, Mann, Kulwinder Singh.  2019.  Prevention of DoS Attacks by Detection of Multiple Malicious Nodes in VANETs. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :89—94.

Vehicular Adhoc Network (VANET), a specialized form of MANET in which safety is the major concern as critical information related to driver's safety and assistance need to be disseminated between the vehicle nodes. The security of the nodes can be increased, if the network availability is increased. The availability of the network is decreased, if there is Denial of Service Attacks (DoS) in the network. In this paper, a packet detection algorithm for the prevention of DoS attacks is proposed. This algorithm will be able to detect the multiple malicious nodes in the network which are sending irrelevant packets to jam the network and that will eventually stop the network to send the safety messages. The proposed algorithm was simulated in NS-2 and the quantitative values of packet delivery ratio, packet loss ratio, network throughput proves that the proposed algorithm enhance the security of the network by detecting the DoS attack well in time.

2019-12-18
Guleria, Charu, Verma, Harsh Kumar.  2018.  Improved Detection and Mitigation of DDoS Attack in Vehicular ad hoc Network. 2018 4th International Conference on Computing Communication and Automation (ICCCA). :1–4.
Vehicular ad hoc networks (VANETs) are eminent type of Mobile ad hoc Networks. The network created in VANETs is quite prone to security problem. In this work, a new mechanism is proposed to study the security of VANETs against DDoS attack. The proposed mechanism focuses on distributed denial of service attacks. The main idea of the paper is to detect the DDoS attack and mitigate it. The work consists of two stages, initially attack topology and network congestion is created. The second stage is to detect and mitigate the DDoS attack. The existing method is compared with the proposed method for mitigating DDoS attacks in VANETs. The existing solutions presented by the various researchers are also compared and analyzed. The solution for such kind of problem is provided which is used to detect and mitigate DDoS attack by using greedy approach. The network environment is created using NS-2. The results of simulation represent that the proposed approach is better in the terms of network packet loss, routing overhead and network throughput.
2019-06-10
Umar, M., Sabo, A., Tata, A. A..  2018.  Modified Cooperative Bait Detection Scheme for Detecting and Preventing Cooperative Blackhole and Eavesdropping Attacks in MANET. 2018 International Conference on Networking and Network Applications (NaNA). :121–126.

Mobile ad-hoc network (MANET) is a system of wireless mobile nodes that are dynamically self-organized in arbitrary and temporary topologies, that have received increasing interest due to their potential applicability to numerous applications. The deployment of such networks however poses several security challenging issues, due to their lack of fixed communication infrastructure, centralized administration, nodes mobility and dynamic topological changes, which make it susceptible to passive and active attacks such as single and cooperative black hole, sinkhole and eavesdropping attacks. The mentioned attacks mainly disrupt data routing processes by giving false routing information or stealing secrete information by malicious nodes in MANET. Thus, finding safe routing path by avoiding malicious nodes is a genuine challenge. This paper aims at combining the existing cooperative bait detection scheme which uses the baiting procedure to bait malicious nodes into sending fake route reply and then using a reverse tracing operation to detect the malicious nodes, with an RSA encryption technique to encode data packet before transmitting it to the destination to prevent eavesdropper and other malicious nodes from unauthorized read and write on the data packet. The proposed work out performs the existing Cooperative Bait Detection Scheme (CBDS) in terms of packet delivery ratio, network throughput, end to end delay, and the routing overhead.

2019-01-21
Elmahdi, E., Yoo, S., Sharshembiev, K..  2018.  Securing data forwarding against blackhole attacks in mobile ad hoc networks. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :463–467.

A mobile ad hoc network (MANET) is vulnerable to many types of attacks. Thus, security has turned out to be an important factor to facilitate secured communication between mobile nodes in a wireless environment. In this paper we propose a new approach to provide reliable and secure data transmission in MANETs under possible blackhole attacks based on ad hoc on-demand multipath distance vector (AOMDV) protocol and homomorphic encryption scheme for security. The performance of the proposed scheme is stable but that of AOMDV is found to be degrading with the intrusion of malicious nodes in the network. Simulation results show the improvement of packet delivery ratio and network throughput in the presence of blackhole nodes in our proposed scheme.

2018-06-20
Shabut, A. M., Dahal, K., Kaiser, M. S., Hossain, M. A..  2017.  Malicious insider threats in tactical MANET: The performance analysis of DSR routing protocol. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). :187–192.

Tactical Mobile Ad-hoc NETworks (T-MANETs) are mainly used in self-configuring automatic vehicles and robots (also called nodes) for the rescue and military operations. A high dynamic network architecture, nodes unreliability, nodes misbehavior as well as an open wireless medium make it very difficult to assume the nodes cooperation in the `ad-hoc network or comply with routing rules. The routing protocols in the T-MANET are unprotected and subsequently result in various kinds of nodes misbehavior's (such as selfishness and denial of service). This paper introduces a comprehensive analysis of the packet dropping attack includes three types of misbehavior conducted by insiders in the T-MANETs namely black hole, gray hole, and selfish behaviours. An insider threat model is appended to a state-of-the-art routing protocol (such as DSR) and analyze the effect of packet dropping attack on the performance evaluation of DSR in the T-MANET. This paper contributes to the existing knowledge in a way it allows further security research to understand the behaviours of the main threats in MANETs which depends on nods defection in the packet forwarding. The simulation of the packet dropping attack is conducted using the Network Simulator 2 (NS2). It has been found that the network throughput has dropped considerably for black and gray hole attacks whereas the selfish nodes delay the network flow. Moreover, the packet drop rate and energy consumption rate are higher for black and gray hole attacks.

2015-05-04
Rahman, S.M.M., Kamruzzaman, S.M., Almogren, A., Alelaiwi, A., Alamri, A., Alghamdi, A..  2014.  Anonymous and Secure Communication Protocol for Cognitive Radio Ad Hoc Networks. Multimedia (ISM), 2014 IEEE International Symposium on. :393-398.

Cognitive radio (CR) networks are becoming an increasingly important part of the wireless networking landscape due to the ever-increasing scarcity of spectrum resources throughout the world. Nowadays CR media is becoming popular wireless communication media for disaster recovery communication network. Although the operational aspects of CR are being explored vigorously, its security aspects have gained less attention to the research community. The existing research on CR network mainly focuses on the spectrum sensing and allocation, energy efficiency, high throughput, end-to-end delay and other aspect of the network technology. But, very few focuses on the security aspect and almost none focus on the secure anonymous communication in CR networks (CRNs). In this research article we would focus on secure anonymous communication in CR ad hoc networks (CRANs). We would propose a secure anonymous routing for CRANs based on pairing based cryptography which would provide source node, destination node and the location anonymity. Furthermore, the proposed research would protect different attacks those are feasible on CRANs.