Visible to the public Biblio

Filters: Keyword is conventional machine learning  [Clear All Filters]
2020-04-24
Balijabudda, Venkata Sreekanth, Thapar, Dhruv, Santikellur, Pranesh, Chakraborty, Rajat Subhra, Chakrabarti, Indrajit.  2019.  Design of a Chaotic Oscillator based Model Building Attack Resistant Arbiter PUF. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.

Physical Unclonable Functions (PUFs) are vulnerable to various modelling attacks. The chaotic behaviour of oscillating systems can be leveraged to improve their security against these attacks. We have integrated an Arbiter PUF implemented on a FPGA with Chua's oscillator circuit to obtain robust final responses. These responses are tested against conventional Machine Learning and Deep Learning attacks for verifying security of the design. It has been found that such a design is robust with prediction accuracy of nearly 50%. Moreover, the quality of the PUF architecture is evaluated for uniformity and uniqueness metrics and Monte Carlo analysis at varying temperatures is performed for determining reliability.