Biblio
Filters: Keyword is security situation prediction [Clear All Filters]
A Security Situation Prediction Method Based on Improved Deep Belief Network. 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT. :594–598.
.
2020. With the rapid development of smart grids and the continuous deepening of informatization, while realizing remote telemetry and remote control of massive data-based grid operation, electricity information network security problems have become more serious and prominent. A method for electricity information network security situation prediction method based on improved deep belief network is proposed in this paper. Firstly, the affinity propagation clustering algorithm is used to determine the depth of the deep belief network and the number of hidden layer nodes based on sample parameters. Secondly, continuously adjust the scaling factor and crossover probability in the differential evolution algorithm according to the population similarity. Finally, a chaotic search method is used to perform a second search for the best individuals and similarity centers of each generation of the population. Simulation experiments show that the proposed algorithm not only enhances the generalization ability of electricity information network security situation prediction, but also has higher prediction accuracy.
Security Situation Prediction based on Hybrid Rice Optimization Algorithm and Back Propagation Neural Network. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :73—77.
.
2018. Research on network security situation awareness is currently a research hotspot in the field of network security. It is one of the easiest and most effective methods to use the BP neural network for security situation prediction. However, there are still some problems in BP neural network, such as slow convergence rate, easy to fall into local extremum, etc. On the other hand, some common used evolutionary algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), easily fall into local optimum. Hybrid rice optimization algorithm is a newly proposed algorithm with strong search ability, so the method of this paper is proposed. This article describes in detail the use of BP network security posture prediction method. In the proposed method, HRO is used to train the connection weights of the BP network. Through the advantages of HRO global search and fast convergence, the future security situation of the network is predicted, and the accuracy of the situation prediction is effectively improved.