Visible to the public Biblio

Filters: Keyword is modular framework  [Clear All Filters]
2020-09-14
Wu, Pengfei, Deng, Robert, Shen, Qingni, Liu, Ximeng, Li, Qi, Wu, Zhonghai.  2019.  ObliComm: Towards Building an Efficient Oblivious Communication System. IEEE Transactions on Dependable and Secure Computing. :1–1.
Anonymous Communication (AC) hides traffic patterns and protects message metadata from being leaked during message transmission. Many practical AC systems have been proposed aiming to reduce communication latency and support a large number of users. However, how to design AC systems which possess strong security property and at the same time achieve optimal performance (i.e., the lowest latency or highest horizontal scalability) has been a challenging problem. In this paper, we propose an ObliComm framework, which consists of six modular AC subroutines. We also present a strong security definition for AC, named oblivious communication, encompassing confidentiality, unobservability, and a new requirement sending-and-receiving operation hiding. The AC subroutines in ObliComm allow for modular construction of oblivious communication systems in different network topologies. All constructed systems satisfy oblivious communication definition and can be provably secure in the universal composability (UC) framework. Additionally, we model the relationship between the network topology and communication measurements by queuing theory, which enables the system's efficiency can be optimized and estimated by quantitative analysis and calculation. Through theoretical analyses and empirical experiments, we demonstrate the efficiency of our scheme and soundness of the queuing model.
2020-05-15
Egert, Rolf, Grube, Tim, Born, Dustin, Mühlhäuser, Max.  2019.  Modular Vulnerability Indication for the IoT in IP-Based Networks. 2019 IEEE Globecom Workshops (GC Wkshps). :1—6.

With the rapidly increasing number of Internet of Things (IoT) devices and their extensive integration into peoples' daily lives, the security of those devices is of primary importance. Nonetheless, many IoT devices suffer from the absence, or the bad application, of security concepts, which leads to severe vulnerabilities in those devices. To achieve early detection of potential vulnerabilities, network scanner tools are frequently used. However, most of those tools are highly specialized; thus, multiple tools and a meaningful correlation of their results are required to obtain an adequate listing of identified network vulnerabilities. To simplify this process, we propose a modular framework for automated network reconnaissance and vulnerability indication in IP-based networks. It allows integrating a diverse set of tools as either, scanning tools or analysis tools. Moreover, the framework enables result aggregation of different modules and allows information sharing between modules facilitating the development of advanced analysis modules. Additionally, intermediate scanning and analysis data is stored, enabling a historical view of derived information and also allowing users to retrace decision-making processes. We show the framework's modular capabilities by implementing one scanner module and three analysis modules. The automated process is then evaluated using an exemplary scenario with common IP-based IoT components.