Visible to the public Biblio

Filters: Keyword is Sensor phenomena and characterization  [Clear All Filters]
2023-08-18
Shen, Wendi, Yang, Genke.  2022.  An error neighborhood-based detection mechanism to improve the performance of anomaly detection in industrial control systems. 2022 International Conference on Mechanical, Automation and Electrical Engineering (CMAEE). :25—29.
Anomaly detection for devices (e.g, sensors and actuators) plays a crucial role in Industrial Control Systems (ICS) for security protection. The typical framework of deep learning-based anomaly detection includes a model to predict or reconstruct the state of devices and a detection mechanism to determine anomalies. The majority of anomaly detection methods use a fixed threshold detection mechanism to detect anomalous points. However, the anomalies caused by cyberattacks in ICSs are usually continuous anomaly segments. In this paper, we propose a novel detection mechanism to detect continuous anomaly segments. Its core idea is to determine the start and end times of anomalies based on the continuity characteristics of anomalies and the dynamics of error. We conducted experiments on the two real-world datasets for performance evaluation using five baselines. The F1 score increased by 3.8% on average in the SWAT dataset and increased by 15.6% in the WADI dataset. The results show a significant improvement in the performance of baselines using an error neighborhood-based continuity detection mechanism in a real-time manner.
2023-05-11
Tanaka, Tatsuki, Sugawara, Takeshi.  2022.  Laser-Based Signal-Injection Attack on Piezoresistive MEMS Pressure Sensors. 2022 IEEE Sensors. :1–4.
As more and more information systems rely sen-sors for their critical decisions, there is a growing threat of injecting false signals to sensors in the analog domain. In particular, LightCommands showed that MEMS microphones are susceptible to light, through the photoacoustic and photoelectric effects, enabling an attacker to silently inject voice commands to smart speakers. Understanding such unexpected transduction mechanisms is essential for designing secure and reliable MEMS sensors. Is there any other transduction mechanism enabling laser-induced attacks? We positively answer the question by experimentally evaluating two commercial piezoresistive MEMS pressure sensors. By shining a laser light at the piezoresistors through an air hole on the sensor package, the pressure reading changes by ±1000 hPa with 0.5 mW laser power. This phenomenon can be explained by the photoelectric effect at the piezoresistors, which increases the number of carriers and decreases the resistance. We finally show that an attacker can induce the target signal at the sensor reading by shining an amplitude-modulated laser light.
ISSN: 2168-9229
2023-01-20
Cheng, Xi, Liang, Yafeng, Qiu, Jianhong, Zhao, XiaoLi, Ma, Lihong.  2022.  Risk Assessment Method of Microgrid System Based on Random Matrix Theory. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:705—709.
In view of the problems that the existing power grid risk assessment mainly depends on the data fusion of decision-making level, which has strong subjectivity and less effective information, this paper proposes a risk assessment method of microgrid system based on random matrix theory. Firstly, the time series data of multiple sensors are constructed into a high-dimensional matrix according to the different parameter types and nodes; Then, based on random matrix theory and sliding time window processing, the average spectral radius sequence is calculated to characterize the state of microgrid system. Finally, an example is given to verify the effectiveness of the method.
Zhai, Di, Lu, Yang, Shi, Rui, Ji, Yuejie.  2022.  Large-Scale Micro-Power Sensors Access Scheme Based on Hybrid Mode in IoT Enabled Smart Grid. 2022 7th International Conference on Signal and Image Processing (ICSIP). :719—723.
In order to solve the problem of high data collision probability, high access delay and high-power consumption in random access process of power Internet of Things, an access scheme for large-scale micro-power wireless sensors based on slot-scheduling and hybrid mode is presented. This scheme divides time into different slots and designs a slot-scheduling algorithm according to network workload and power consumption. Sensors with different service priorities are arranged in different time slots for competitive access, using appropriate random-access mechanism. And rationally arrange the number of time slots and competing end-devices in different time slots. This scheme is able to meet the timeliness requirements of different services and reduce the overall network power consumption when dealing with random access scenarios of large-scale micro-power wireless sensor network. Based on the simulation results of actual scenarios, this access scheme can effectively reduce the overall power consumption of the network, and the high priority services can meet the timeliness requirements on the premise of lower power consumption, while the low priority services can further reduce power consumption.
2022-10-20
Larsen, Raphaël M.J.I., Pahl, Marc-Oliver, Coatrieux, Gouenou.  2021.  Authenticating IDS autoencoders using multipath neural networks. 2021 5th Cyber Security in Networking Conference (CSNet). :1—9.
An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure \$c\$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable \$c\$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.
2022-09-20
Wang, Xuelei, Fidge, Colin, Nourbakhsh, Ghavameddin, Foo, Ernest, Jadidi, Zahra, Li, Calvin.  2021.  Feature Selection for Precise Anomaly Detection in Substation Automation Systems. 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC). :1—6.
With the rapid advancement of the electrical grid, substation automation systems (SASs) have been developing continuously. However, with the introduction of advanced features, such as remote control, potential cyber security threats in SASs are also increased. Additionally, crucial components in SASs, such as protection relays, usually come from third-party vendors and may not be fully trusted. Untrusted devices may stealthily perform harmful or unauthorised behaviours which could compromise or damage SASs, and therefore, bring adverse impacts to the primary plant. Thus, it is necessary to detect abnormal behaviours from an untrusted device before it brings about catastrophic impacts. Anomaly detection techniques are suitable to detect anomalies in SASs as they only bring minimal side-effects to normal system operations. Many researchers have developed various machine learning algorithms and mathematical models to improve the accuracy of anomaly detection. However, without prudent feature selection, it is difficult to achieve high accuracy when detecting attacks launched from internal trusted networks, especially for stealthy message modification attacks which only modify message payloads slightly and imitate patterns of benign behaviours. Therefore, this paper presents choices of features which improve the accuracy of anomaly detection within SASs, especially for detecting “stealthy” attacks. By including two additional features, Boolean control data from message payloads and physical values from sensors, our method improved the accuracy of anomaly detection by decreasing the false-negative rate from 25% to 5% approximately.
2022-07-14
Taylor, Michael A., Larson, Eric C., Thornton, Mitchell A..  2021.  Rapid Ransomware Detection through Side Channel Exploitation. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :47–54.
A new method for the detection of ransomware in an infected host is described and evaluated. The method utilizes data streams from on-board sensors to fingerprint the initiation of a ransomware infection. These sensor streams, which are common in modern computing systems, are used as a side channel for understanding the state of the system. It is shown that ransomware detection can be achieved in a rapid manner and that the use of slight, yet distinguishable changes in the physical state of a system as derived from a machine learning predictive model is an effective technique. A feature vector, consisting of various sensor outputs, is coupled with a detection criteria to predict the binary state of ransomware present versus normal operation. An advantage of this approach is that previously unknown or zero-day version s of ransomware are vulnerable to this detection method since no apriori knowledge of the malware characteristics are required. Experiments are carried out with a variety of different system loads and with different encryption methods used during a ransomware attack. Two test systems were utilized with one having a relatively low amount of available sensor data and the other having a relatively high amount of available sensor data. The average time for attack detection in the "sensor-rich" system was 7.79 seconds with an average Matthews correlation coefficient of 0.8905 for binary system state predictions regardless of encryption method and system load. The model flagged all attacks tested.
2022-06-09
Gupta, Ragini, Nahrstedt, Klara, Suri, Niranjan, Smith, Jeffrey.  2021.  SVAD: End-to-End Sensory Data Analysis for IoBT-Driven Platforms. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :903–908.
The rapid advancement of IoT technologies has led to its flexible adoption in battle field networks, known as Internet of Battlefield Things (IoBT) networks. One important application of IoBT networks is the weather sensory network characterized with a variety of weather, land and environmental sensors. This data contains hidden trends and correlations, needed to provide situational awareness to soldiers and commanders. To interpret the incoming data in real-time, machine learning algorithms are required to automate strategic decision-making. Existing solutions are not well-equipped to provide the fine-grained feedback to military personnel and cannot facilitate a scalable, end-to-end platform for fast unlabeled data collection, cleaning, querying, analysis and threats identification. In this work, we present a scalable end-to-end IoBT data driven platform for SVAD (Storage, Visualization, Anomaly Detection) analysis of heterogeneous weather sensor data. Our SVAD platform includes extensive data cleaning techniques to denoise efficiently data to differentiate data from anomalies and noise data instances. We perform comparative analysis of unsupervised machine learning algorithms for multi-variant data analysis and experimental evaluation of different data ingestion pipelines to show the ability of the SVAD platform for (near) real-time processing. Our results indicate impending turbulent weather conditions that can be detected by early anomaly identification and detection techniques.
2022-04-19
Rodriguez, Daniel, Wang, Jing, Li, Changzhi.  2021.  Spoofing Attacks to Radar Motion Sensors with Portable RF Devices. 2021 IEEE Radio and Wireless Symposium (RWS). :73–75.
Radar sensors have shown great potential for surveillance and security authentication applications. However, a thorough analysis of their vulnerability to spoofing or replay attacks has not been performed yet. In this paper, the feasibility of performing spoofing attacks to radar sensor is studied and experimentally verified. First, a simple binary phase-shift keying system was used to generate artificial spectral components in the radar's demodulated signal. Additionally, an analog phase shifter was driven by an arbitrary signal generator to mimic the human cardio-respiratory motion. Characteristic time and frequency domain cardio-respiratory human signatures were successfully generated, which opens possibilities to perform spoofing attacks to surveillance and security continuous authentication systems based on microwave radar sensors.
2020-11-30
Beran, P., Klöhn, M., Hohe, H..  2019.  Measurement Characteristics of Different Integrated Three-Dimensional Magnetic Field Sensors. IEEE Magnetics Letters. 10:1–5.
Datasheets of different commercially available integrated sensors for vector measurements of magnetic fields provide typical specifications, such as measurement range, sampling rate, resolution, and noise. Other characteristics of interest, such as linearity, cross-sensitivity, remanent magnetization, and drifts over temperature, are mostly missing. This letter presents testing results of those characteristics of integrated three-dimensional (3-D) sensors working with different sensor principles and technologies in a reproducible measuring process. The sensors are exposed to temperatures from -20 °C to 80 °C and are cycled in hysteresis loops in fields up to 2.5 mT. For applying high-accuracy magnetic fields, a calibrated 3-D Helmholtz coil setup is used. Commercially available integrated 3-D magnetic field sensors are put in operation on a printed circuit board using nonmagnetic passive components. All sensors are configured for best measurement accuracy according to their data-sheets. The results show that sensors based on anisotropic magnetoresistance have high accuracy and low offsets yet also a high degree of nonlinearity. Hall-based sensors show good linearity but also high cross-sensitivity. A magnetic remanence appears for Hall-based sensors with integrated magnetic concentrators as well as for sensors using anisotropic magnetoresistance. Nearly all sensors show remaining drifts over temperature regarding offset and sensitivity up to several percentages.
2017-12-20
Lee, W. H., Lee, R. B..  2017.  Implicit Smartphone User Authentication with Sensors and Contextual Machine Learning. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :297–308.

Authentication of smartphone users is important because a lot of sensitive data is stored in the smartphone and the smartphone is also used to access various cloud data and services. However, smartphones are easily stolen or co-opted by an attacker. Beyond the initial login, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data. Hence, this paper proposes a novel authentication system for implicit, continuous authentication of the smartphone user based on behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We propose novel context-based authentication models to differentiate the legitimate smartphone owner versus other users. We systematically show how to achieve high authentication accuracy with different design alternatives in sensor and feature selection, machine learning techniques, context detection and multiple devices. Our system can achieve excellent authentication performance with 98.1% accuracy with negligible system overhead and less than 2.4% battery consumption.

2017-02-27
Orojloo, H., Azgomi, M. A..  2015.  Evaluating the complexity and impacts of attacks on cyber-physical systems. 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST). :1–8.

In this paper, a new method for quantitative evaluation of the security of cyber-physical systems (CPSs) is proposed. The proposed method models the different classes of adversarial attacks against CPSs, including cross-domain attacks, i.e., cyber-to-cyber and cyber-to-physical attacks. It also takes the secondary consequences of attacks on CPSs into consideration. The intrusion process of attackers has been modeled using attack graph and the consequence estimation process of the attack has been investigated using process model. The security attributes and the special parameters involved in the security analysis of CPSs, have been identified and considered. The quantitative evaluation has been done using the probability of attacks, time-to-shutdown of the system and security risks. The validation phase of the proposed model is performed as a case study by applying it to a boiling water power plant and estimating the suitable security measures.

2015-05-04
Yuying Wang, Xingshe Zhou.  2014.  Spatio-temporal semantic enhancements for event model of cyber-physical systems. Signal Processing, Communications and Computing (ICSPCC), 2014 IEEE International Conference on. :813-818.

The newly emerging cyber-physical systems (CPS) discover events from multiple, distributed sources with multiple levels of detail and heterogeneous data format, which may not be compare and integrate, and turn to hardly combined determination for action. While existing efforts have mainly focused on investigating a uniform CPS event representation with spatio-temporal attributes, in this paper we propose a new event model with two-layer structure, Basic Event Model (BEM) and Extended Information Set (EIS). A BEM could be extended with EIS by semantic adaptor for spatio-temporal and other attribution enhancement. In particular, we define the event process functions, like event attribution extraction and composition determination, for CPS action trigger exploit the Complex Event Process (CEP) engine Esper. Examples show that such event model provides several advantages in terms of extensibility, flexibility and heterogeneous support, and lay the foundations of event-based system design in CPS.