Visible to the public Biblio

Filters: Author is Nahrstedt, Klara  [Clear All Filters]
2022-06-09
Gupta, Ragini, Nahrstedt, Klara, Suri, Niranjan, Smith, Jeffrey.  2021.  SVAD: End-to-End Sensory Data Analysis for IoBT-Driven Platforms. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :903–908.
The rapid advancement of IoT technologies has led to its flexible adoption in battle field networks, known as Internet of Battlefield Things (IoBT) networks. One important application of IoBT networks is the weather sensory network characterized with a variety of weather, land and environmental sensors. This data contains hidden trends and correlations, needed to provide situational awareness to soldiers and commanders. To interpret the incoming data in real-time, machine learning algorithms are required to automate strategic decision-making. Existing solutions are not well-equipped to provide the fine-grained feedback to military personnel and cannot facilitate a scalable, end-to-end platform for fast unlabeled data collection, cleaning, querying, analysis and threats identification. In this work, we present a scalable end-to-end IoBT data driven platform for SVAD (Storage, Visualization, Anomaly Detection) analysis of heterogeneous weather sensor data. Our SVAD platform includes extensive data cleaning techniques to denoise efficiently data to differentiate data from anomalies and noise data instances. We perform comparative analysis of unsupervised machine learning algorithms for multi-variant data analysis and experimental evaluation of different data ingestion pipelines to show the ability of the SVAD platform for (near) real-time processing. Our results indicate impending turbulent weather conditions that can be detected by early anomaly identification and detection techniques.
2020-03-16
Ren, Wenyu, Yu, Tuo, Yardley, Timothy, Nahrstedt, Klara.  2019.  CAPTAR: Causal-Polytree-based Anomaly Reasoning for SCADA Networks. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
The Supervisory Control and Data Acquisition (SCADA) system is the most commonly used industrial control system but is subject to a wide range of serious threats. Intrusion detection systems are deployed to promote the security of SCADA systems, but they continuously generate tremendous number of alerts without further comprehending them. There is a need for an efficient system to correlate alerts and discover attack strategies to provide explainable situational awareness to SCADA operators. In this paper, we present a causal-polytree-based anomaly reasoning framework for SCADA networks, named CAPTAR. CAPTAR takes the meta-alerts from our previous anomaly detection framework EDMAND, correlates the them using a naive Bayes classifier, and matches them to predefined causal polytrees. Utilizing Bayesian inference on the causal polytrees, CAPTAR can produces a high-level view of the security state of the protected SCADA network. Experiments on a prototype of CAPTAR proves its anomaly reasoning ability and its capabilities of satisfying the real-time reasoning requirement.
2017-10-18
Ren, Wenyu, Nahrstedt, Klara, Yardley, Tim.  2016.  Operation-level Traffic Analyzer Framework for Smart Grid. Proceedings of the Symposium and Bootcamp on the Science of Security. :112–114.

The Smart Grid control systems need to be protected from internal attacks within the perimeter. In Smart Grid, the Intelligent Electronic Devices (IEDs) are resource-constrained devices that do not have the ability to provide security analysis and protection by themselves. And the commonly used industrial control system protocols offer little security guarantee. To guarantee security inside the system, analysis and inspection of both internal network traffic and device status need to be placed close to IEDs to provide timely information to power grid operators. For that, we have designed a unique, extensible and efficient operation-level traffic analyzer framework. The timing evaluation of the analyzer overhead confirms efficiency under Smart Grid operational traffic.

2017-09-05
Yu, Tuo, Jin, Haiming, Nahrstedt, Klara.  2016.  WritingHacker: Audio Based Eavesdropping of Handwriting via Mobile Devices. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :463–473.

When filling out privacy-related forms in public places such as hospitals or clinics, people usually are not aware that the sound of their handwriting leaks personal information. In this paper, we explore the possibility of eavesdropping on handwriting via nearby mobile devices based on audio signal processing and machine learning. By presenting a proof-of-concept system, WritingHacker, we show the usage of mobile devices to collect the sound of victims' handwriting, and to extract handwriting-specific features for machine learning based analysis. WritingHacker focuses on the situation where the victim's handwriting follows certain print style. An attacker can keep a mobile device, such as a common smart-phone, touching the desk used by the victim to record the audio signals of handwriting. Then the system can provide a word-level estimate for the content of the handwriting. To reduce the impacts of various writing habits and writing locations, the system utilizes the methods of letter clustering and dictionary filtering. Our prototype system's experimental results show that the accuracy of word recognition reaches around 50% - 60% under certain conditions, which reveals the danger of privacy leakage through the sound of handwriting.

2017-08-18
Ren, Wenyu, Nahrstedt, Klara, Yardley, Tim.  2016.  Operation-level Traffic Analyzer Framework for Smart Grid. Proceedings of the Symposium and Bootcamp on the Science of Security. :112–114.

The Smart Grid control systems need to be protected from internal attacks within the perimeter. In Smart Grid, the Intelligent Electronic Devices (IEDs) are resource-constrained devices that do not have the ability to provide security analysis and protection by themselves. And the commonly used industrial control system protocols offer little security guarantee. To guarantee security inside the system, analysis and inspection of both internal network traffic and device status need to be placed close to IEDs to provide timely information to power grid operators. For that, we have designed a unique, extensible and efficient operation-level traffic analyzer framework. The timing evaluation of the analyzer overhead confirms efficiency under Smart Grid operational traffic.

2017-06-05
Jin, Haiming, Su, Lu, Xiao, Houping, Nahrstedt, Klara.  2016.  INCEPTION: Incentivizing Privacy-preserving Data Aggregation for Mobile Crowd Sensing Systems. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :341–350.

The recent proliferation of human-carried mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to the public crowd equipped with various mobile devices. A fundamental issue in such systems is to effectively incentivize worker participation. However, instead of being an isolated module, the incentive mechanism usually interacts with other components which may affect its performance, such as data aggregation component that aggregates workers' data and data perturbation component that protects workers' privacy. Therefore, different from past literature, we capture such interactive effect, and propose INCEPTION, a novel MCS system framework that integrates an incentive, a data aggregation, and a data perturbation mechanism. Specifically, its incentive mechanism selects workers who are more likely to provide reliable data, and compensates their costs for both sensing and privacy leakage. Its data aggregation mechanism also incorporates workers' reliability to generate highly accurate aggregated results, and its data perturbation mechanism ensures satisfactory protection for workers' privacy and desirable accuracy for the final perturbed results. We validate the desirable properties of INCEPTION through theoretical analysis, as well as extensive simulations.

2014-09-17
Cao, Phuong, Li, Hongyang, Nahrstedt, Klara, Kalbarczyk, Zbigniew, Iyer, Ravishankar, Slagell, Adam J..  2014.  Personalized Password Guessing: A New Security Threat. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :22:1–22:2.

This paper presents a model for generating personalized passwords (i.e., passwords based on user and service profile). A user's password is generated from a list of personalized words, each word is drawn from a topic relating to a user and the service in use. The proposed model can be applied to: (i) assess the strength of a password (i.e., determine how many guesses are used to crack the password), and (ii) generate secure (i.e., contains digits, special characters, or capitalized characters) yet easy to memorize passwords.