Visible to the public Biblio

Filters: Keyword is data distribution  [Clear All Filters]
2021-03-29
Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., Yan, Q..  2020.  Detecting Adversarial Examples for Network Intrusion Detection System with GAN. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :6–10.
With the increasing scale of network, attacks against network emerge one after another, and security problems become increasingly prominent. Network intrusion detection system is a widely used and effective security means at present. In addition, with the development of machine learning technology, various intelligent intrusion detection algorithms also start to sprout. By flexibly combining these intelligent methods with intrusion detection technology, the comprehensive performance of intrusion detection can be improved, but the vulnerability of machine learning model in the adversarial environment can not be ignored. In this paper, we study the defense problem of network intrusion detection system against adversarial samples. More specifically, we design a defense algorithm for NIDS against adversarial samples by using bidirectional generative adversarial network. The generator learns the data distribution of normal samples during training, which is an implicit model reflecting the normal data distribution. After training, the adversarial sample detection module calculates the reconstruction error and the discriminator matching error of sample. Then, the adversarial samples are removed, which improves the robustness and accuracy of NIDS in the adversarial environment.
2021-02-22
Kornaropoulos, E. M., Papamanthou, C., Tamassia, R..  2020.  The State of the Uniform: Attacks on Encrypted Databases Beyond the Uniform Query Distribution. 2020 IEEE Symposium on Security and Privacy (SP). :1223–1240.
Recent foundational work on leakage-abuse attacks on encrypted databases has broadened our understanding of what an adversary can accomplish with a standard leakage profile. Nevertheless, all known value reconstruction attacks succeed under strong assumptions that may not hold in the real world. The most prevalent assumption is that queries are issued uniformly at random by the client. We present the first value reconstruction attacks that succeed without any knowledge about the query or data distribution. Our approach uses the search-pattern leakage, which exists in all known structured encryption schemes but has not been fully exploited so far. At the core of our method lies a support size estimator, a technique that utilizes the repetition of search tokens with the same response to estimate distances between encrypted values without any assumptions about the underlying distribution. We develop distribution-agnostic reconstruction attacks for both range queries and k-nearest-neighbor (k-NN) queries based on information extracted from the search-pattern leakage. Our new range attack follows a different algorithmic approach than state-of-the-art attacks, which are fine-tuned to succeed under the uniformly distributed queries. Instead, we reconstruct plaintext values under a variety of skewed query distributions and even outperform the accuracy of previous approaches under the uniform query distribution. Our new k-NN attack succeeds with far fewer samples than previous attacks and scales to much larger values of k. We demonstrate the effectiveness of our attacks by experimentally testing them on a wide range of query distributions and database densities, both unknown to the adversary.
2020-08-28
Ferreira, P.M.F.M., Orvalho, J.M., Boavida, F..  2005.  Large Scale Mobile and Pervasive Augmented Reality Games. EUROCON 2005 - The International Conference on "Computer as a Tool". 2:1775—1778.
Ubiquitous or pervasive computing is a new kind of computing, where specialized elements of hardware and software will have such high level of deployment that their use will be fully integrated with the environment. Augmented reality extends reality with virtual elements but tries to place the computer in a relatively unobtrusive, assistive role. To our knowledge, there is no specialized network middleware solution for large-scale mobile and pervasive augmented reality games. We present a work that focus on the creation of such network middleware for mobile and pervasive entertainment, applied to the area of large scale augmented reality games. In, this context, mechanisms are being studied, proposed and evaluated to deal with issues such as scalability, multimedia data heterogeneity, data distribution and replication, consistency, security, geospatial location and orientation, mobility, quality of service, management of networks and services, discovery, ad-hoc networking and dynamic configuration
Parafita, Álvaro, Vitrià, Jordi.  2019.  Explaining Visual Models by Causal Attribution. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). :4167—4175.

Model explanations based on pure observational data cannot compute the effects of features reliably, due to their inability to estimate how each factor alteration could affect the rest. We argue that explanations should be based on the causal model of the data and the derived intervened causal models, that represent the data distribution subject to interventions. With these models, we can compute counterfactuals, new samples that will inform us how the model reacts to feature changes on our input. We propose a novel explanation methodology based on Causal Counterfactuals and identify the limitations of current Image Generative Models in their application to counterfactual creation.

2020-06-26
Gupta, Shubhi, Vashisht, Swati, Singh, Divya, kushwaha, Pradeep.  2019.  Enhancing Big Data Security using Elliptic Curve Cryptography. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :348—351.

Withgrowing times and technology, and the data related to it is increasing on daily basis and so is the daunting task to manage it. The present solution to this problem i.e our present databases, are not the long-term solutions. These data volumes need to be stored safely and retrieved safely to use. This paper presents an overview of security issues for big data. Big Data encompasses data configuration, distribution and analysis of the data that overcome the drawbacks of traditional data processing technology. Big data manages, stores and acquires data in a speedy and cost-effective manner with the help of tools, technologies and frameworks.

2020-06-01
Nikolaidis, Fotios, Kossifidis, Nick, Leibovici, Thomas, Zertal, Soraya.  2018.  Towards a TRansparent I/O Solution. 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). :1221–1228.
The benefits of data distribution to multiple storage platforms with different characteristics have been widely acknowledged. Such systems are more tolerant to outages and bottlenecks and allow for more flexible policies regarding cost reduction, security and workload diversity. To leverage platforms simultaneously additional orchestration steps are needed. Existing approaches either implement such steps in the application's source code, resulting to minimum reusability across applications, or handle them at the infrastructure level. The latter usually involves over-engineering to handle different application behaviors and binds the system to a specific infrastructure. In this paper we present a middle-ware that decouples the I/O path from the application's source code and performs in-transit processing before data lands on the storage platforms. Abstracting the I/O process as a graph of reusable components allows the developers to easily implement complex storage solutions without the burden of writing custom code. Similarly, the administrators can create their own graph that reflects the infrastructure setup and append it to the preceding graph, so that various policies and infrastructure-related changes can be performed transparently to the application. Users can also extend the graph chain to enhance the application's functionality by using plug-ins. Our approach eliminates the need for custom I/O management code and allows for the applications to evolve independently of the storage back-end. To evaluate our system we employed a secure web service scenario that was seamlessly adapted to the changes in its storage back-end.
2020-05-22
Dubey, Abhimanyu, Maaten, Laurens van der, Yalniz, Zeki, Li, Yixuan, Mahajan, Dhruv.  2019.  Defense Against Adversarial Images Using Web-Scale Nearest-Neighbor Search. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :8759—8768.
A plethora of recent work has shown that convolutional networks are not robust to adversarial images: images that are created by perturbing a sample from the data distribution as to maximize the loss on the perturbed example. In this work, we hypothesize that adversarial perturbations move the image away from the image manifold in the sense that there exists no physical process that could have produced the adversarial image. This hypothesis suggests that a successful defense mechanism against adversarial images should aim to project the images back onto the image manifold. We study such defense mechanisms, which approximate the projection onto the unknown image manifold by a nearest-neighbor search against a web-scale image database containing tens of billions of images. Empirical evaluations of this defense strategy on ImageNet suggest that it very effective in attack settings in which the adversary does not have access to the image database. We also propose two novel attack methods to break nearest-neighbor defense settings and show conditions under which nearest-neighbor defense fails. We perform a series of ablation experiments, which suggest that there is a trade-off between robustness and accuracy between as we use features from deeper in the network, that a large index size (hundreds of millions) is crucial to get good performance, and that careful construction of database is crucial for robustness against nearest-neighbor attacks.