Biblio
An improved algorithm of the Analytic Hierarchy Process (AHP) is proposed in this paper, which is realized by constructing an improved judgment matrix. Specifically, rough set theory is used in the algorithm to calculate the weight of the network metric data, and then the improved AHP algorithm nine-point systemic is structured, finally, an improved AHP judgment matrix is constructed. By performing an AHP operation on the improved judgment matrix, the weight of the improved network metric data can be obtained. If only the rough set theory is applied to process the network index data, the objective factors would dominate the whole process. If the improved algorithm of AHP is used to integrate the expert score into the process of measurement, then the combination of subjective factors and objective factors can be realized. Based on the aforementioned theory, a new network attack metrics system is proposed in this paper, which uses a metric structure based on "attack type-attack attribute-attack atomic operation-attack metrics", in which the metric process of attack attribute adopts AHP. The metrics of the system are comprehensive, given their judgment of frequent attacks is universal. The experiment was verified by an experiment of a common attack Smurf. The experimental results show the effectiveness and applicability of the proposed measurement system.
Data have become an important asset for analysis and behavioral prediction, especially correlations between data. Privacy protection has aroused academic and social concern given the amount of personal sensitive information involved in data. However, existing works assume that the records are independent of each other, which is unsuitable for associated data. Many studies either fail to achieve privacy protection or lead to excessive loss of information while applying data correlations. Differential privacy, which achieves privacy protection by injecting random noise into the statistical results given the correlation, will improve the background knowledge of adversaries. Therefore, this paper proposes an information entropy differential privacy solution for correlation data privacy issues based on rough set theory. Under the solution, we use rough set theory to measure the degree of association between attributes and use information entropy to quantify the sensitivity of the attribute. The information entropy difference privacy is achieved by clustering based on the correlation and adding personalized noise to each cluster while preserving the correlations between data. Experiments show that our algorithm can effectively preserve the correlation between the attributes while protecting privacy.
Phishing as one of the most well-known cybercrime activities is a deception of online users to steal their personal or confidential information by impersonating a legitimate website. Several machine learning-based strategies have been proposed to detect phishing websites. These techniques are dependent on the features extracted from the website samples. However, few studies have actually considered efficient feature selection for detecting phishing attacks. In this work, we investigate an agreement on the definitive features which should be used in phishing detection. We apply Fuzzy Rough Set (FRS) theory as a tool to select most effective features from three benchmarked data sets. The selected features are fed into three often used classifiers for phishing detection. To evaluate the FRS feature selection in developing a generalizable phishing detection, the classifiers are trained by a separate out-of-sample data set of 14,000 website samples. The maximum F-measure gained by FRS feature selection is 95% using Random Forest classification. Also, there are 9 universal features selected by FRS over all the three data sets. The F-measure value using this universal feature set is approximately 93% which is a comparable result in contrast to the FRS performance. Since the universal feature set contains no features from third-part services, this finding implies that with no inquiry from external sources, we can gain a faster phishing detection which is also robust toward zero-day attacks.
Wireless sensor networks have achieved the substantial research interest in the present time because of their unique features such as fault tolerance, autonomous operation etc. The coverage maximization while considering the resource scarcity is a crucial problem in the wireless sensor networks. The approaches which address these problems and maximize the network lifetime are considered prominent. The node scheduling is such mechanism to address this issue. The scheduling strategy which addresses the target coverage problem based on coverage probability and trust values is proposed in Energy Efficient Coverage Protocol (EECP). In this paper the optimized decision rules is obtained by using the rough set theory to determine the number of active nodes. The results show that the proposed extension results in the lesser number of decision rules to consider in determination of node states in the network, hence it improves the network efficiency by reducing the number of packets transmitted and reducing the overhead.
A novel method, consisting of fault detection, rough set generation, element isolation and parameter estimation is presented for multiple-fault diagnosis on analog circuit with tolerance. Firstly, a linear-programming concept is developed to transform fault detection of circuit with limited accessible terminals into measurement to check existence of a feasible solution under tolerance constraints. Secondly, fault characteristic equation is deduced to generate a fault rough set. It is proved that the node voltages of nominal circuit can be used in fault characteristic equation with fault tolerance. Lastly, fault detection of circuit with revised deviation restriction for suspected fault elements is proceeded to locate faulty elements and estimate their parameters. The diagnosis accuracy and parameter identification precision of the method are verified by simulation results.
Variable Precision Rough Set (VPRS) model is one of the most important extensions of the Classical Rough Set (RS) theory. It employs a majority inclusion relation mechanism in order to make the Classical RS model become more fault tolerant, and therefore the generalization of the model is improved. This paper can be viewed as an extension of previous investigations on attribution reduction problem in VPRS model. In our investigation, we illustrated with examples that the previously proposed reduct definitions may spoil the hidden classification ability of a knowledge system by ignoring certian essential attributes in some circumstances. Consequently, by proposing a new β-consistent notion, we analyze the relationship between the structures of Decision Table (DT) and different definitions of reduct in VPRS model. Then we give a new notion of β-complement reduct that can avoid the defects of reduct notions defined in previous literatures. We also supply the method to obtain the β- complement reduct using a decision table splitting algorithm, and finally demonstrate the feasibility of our approach with sample instances.