Visible to the public Biblio

Filters: Keyword is IoT Application Testbed  [Clear All Filters]
2020-06-04
Gulhane, Aniket, Vyas, Akhil, Mitra, Reshmi, Oruche, Roland, Hoefer, Gabriela, Valluripally, Samaikya, Calyam, Prasad, Hoque, Khaza Anuarul.  2019.  Security, Privacy and Safety Risk Assessment for Virtual Reality Learning Environment Applications. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1—9.

Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.