Visible to the public Biblio

Filters: Keyword is zero-sum game  [Clear All Filters]
2020-09-28
Gu, Bruce, Wang, Xiaodong, Qu, Youyang, Jin, Jiong, Xiang, Yong, Gao, Longxiang.  2019.  Context-Aware Privacy Preservation in a Hierarchical Fog Computing System. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Fog computing faces various security and privacy threats. Internet of Things (IoTs) devices have limited computing, storage, and other resources. They are vulnerable to attack by adversaries. Although the existing privacy-preserving solutions in fog computing can be migrated to address some privacy issues, specific privacy challenges still exist because of the unique features of fog computing, such as the decentralized and hierarchical infrastructure, mobility, location and content-aware applications. Unfortunately, privacy-preserving issues and resources in fog computing have not been systematically identified, especially the privacy preservation in multiple fog node communication with end users. In this paper, we propose a dynamic MDP-based privacy-preserving model in zero-sum game to identify the efficiency of the privacy loss and payoff changes to preserve sensitive content in a fog computing environment. First, we develop a new dynamic model with MDP-based comprehensive algorithms. Then, extensive experimental results identify the significance of the proposed model compared with others in more effectively and feasibly solving the discussed issues.
2020-06-08
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.