Visible to the public Biblio

Filters: Keyword is Anti-collision  [Clear All Filters]
2022-02-04
Alma'aitah, Abdallah Y., Massad, Mohammad A..  2021.  Digital Baseband Modulation Termination in RFID Tags for a Streamlined Collision Resolution. 2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA). :1—6.
Radio Frequency Identification (RFID) technology has attracted much attention due to its variety of applications, e.g., inventory control and object tracking. Tag identification protocols are essential in such applications. However, in such protocols, significant time and power are consumed on inevitable simultaneous tag replies (collisions) because tags can't sense the media to organize their replies to the reader. In this paper, novel reader-tag interaction method is proposed in which low-complexity Digital Baseband Modulation Termination (DBMT) circuit is added to RFID tags to enhance collision resolution efficiency in conjunction with Streamlined Collision Resolution (SCR) scheme. The reader, in the proposed SCR, cuts off or reduces the power of its continuous wave signal for specific periods if corrupted data is detected. On the other hand, DBMT circuit at the tag measures the time of the reader signal cutoff, which in turn, allows the tag to interpret different cutoff periods into commands. SCR scheme is applied to ALOHA- and Tree-based protocols with varying numbers of tags to evaluate the performance under low and high collision probabilities. SCR provides a significant enhancement to both types of protocols with robust synchronization within collision slots. This novel reader-tag interaction method provides a new venue for revisiting tag identification and counting protocols.
2020-06-12
Zhang, Suman, Qin, Cai, Wang, Chaowei, Wang, Weidong, Zhang, Yinghai.  2018.  Slot Assignment Algorithm Based on Hash Function for Multi-target RFID System. 2018 IEEE/CIC International Conference on Communications in China (ICCC). :583—587.

Multi-tag identification technique has been applied widely in the RFID system to increase flexibility of the system. However, it also brings serious tags collision issues, which demands the efficient anti-collision schemes. In this paper, we propose a Multi-target tags assignment slots algorithm based on Hash function (MTSH) for efficient multi-tag identification. The proposed algorithm can estimate the number of tags and dynamically adjust the frame length. Specifically, according to the number of tags, the proposed algorithm is composed of two cases. when the number of tags is small, a hash function is constructed to map the tags into corresponding slots. When the number of tags is large, the tags are grouped and randomly mapped into slots. During the tag identification, tags will be paired with a certain matching rate and then some tags will exit to improve the efficiency of the system. The simulation results indicate that the proposed algorithm outperforms the traditional anti-collision algorithms in terms of the system throughput, stability and identification efficiency.