Visible to the public Biblio

Filters: Author is Wang, Weidong  [Clear All Filters]
2022-03-01
Wang, Weidong, Zheng, Yufu, Bao, Yeling, Shui, Shengkun, Jiang, Tao.  2021.  Modulated Signal Recognition Based on Feature-Multiplexed Convolutional Neural Networks. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:621–624.
Modulated signal identification plays a crucial role in both military reconnaissance and civilian signal regulation. Traditionally, modulated signal identification is based on high-order statistics, but this approach has many drawbacks. With the development of deep learning, its advantages are fully exploited by combining it with modulated signals to avoid the complex process of computing a priori knowledge while having good fault tolerance. In this paper, ten digital modulated signals are classified and recognized, and improvements are made on the basis of convolutional neural networks, using feature reuse to increase the depth of the convolutional layer and extract signal features with better results. After experimental analysis, the recognition accuracy increases with the rise of the signal-to-noise ratio, and can reach 90% and above when the signal-to-noise ratio is 30dB.
2020-06-12
Zhang, Suman, Qin, Cai, Wang, Chaowei, Wang, Weidong, Zhang, Yinghai.  2018.  Slot Assignment Algorithm Based on Hash Function for Multi-target RFID System. 2018 IEEE/CIC International Conference on Communications in China (ICCC). :583—587.

Multi-tag identification technique has been applied widely in the RFID system to increase flexibility of the system. However, it also brings serious tags collision issues, which demands the efficient anti-collision schemes. In this paper, we propose a Multi-target tags assignment slots algorithm based on Hash function (MTSH) for efficient multi-tag identification. The proposed algorithm can estimate the number of tags and dynamically adjust the frame length. Specifically, according to the number of tags, the proposed algorithm is composed of two cases. when the number of tags is small, a hash function is constructed to map the tags into corresponding slots. When the number of tags is large, the tags are grouped and randomly mapped into slots. During the tag identification, tags will be paired with a certain matching rate and then some tags will exit to improve the efficiency of the system. The simulation results indicate that the proposed algorithm outperforms the traditional anti-collision algorithms in terms of the system throughput, stability and identification efficiency.