Biblio
Filters: Keyword is Peak to average power ratio [Clear All Filters]
Discrete-nonlinear Colpitts oscillator based communication security increasing of the OFDM systems. 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS). :253—256.
.
2021. This article reports results about the development of the algorithm that allows to increase the information security of OFDM communication system based on the discrete-nonlinear Colpitts system with dynamic chaos. Proposed system works on two layers: information and transport. In the first one, Arnold Transform was applied. The second one, transport level security was provided by QAM constellation mixing. Correlation coefficients, Shannon's entropy and peak-to-average power ratio (PAPR) were estimated.
UUCA: Utility-User Cooperative Algorithm for Flexible Load Scheduling in Distribution System. 2019 8th International Conference on Power Systems (ICPS). :1—6.
.
2019. Demand response analysis in smart grid deployment substantiated itself as an important research area in recent few years. Two-way communication between utility and users makes peak load reduction feasible by delaying the operation of deferrable appliances. Flexible appliance rescheduling is preferred to the users compared to traditional load curtailment. Again, if users' preferences are accounted into appliance transferring process, then customers concede a little discomfort to help the utility in peak reduction. This paper presents a novel Utility-User Cooperative Algorithm (UUCA) to lower total electricity cost and gross peak demand while preserving users' privacy and preferences. Main driving force in UUCA to motivate the consumers is a new cost function for their flexible appliances. As a result, utility will experience low peak and due to electricity cost decrement, users will get reduced bill. However, to maintain privacy, the behaviors of one customer have not be revealed either to other customers or to the central utility. To justify the effectiveness, UUCA is executed separately on residential, commercial and industrial customers of a distribution grid. Harmony search optimization technique has proved itself superior compared to other heuristic search techniques to prove efficacy of UUCA.
Security Aware Spatial Modulation (SA-SM). 2018 IEEE 39th Sarnoff Symposium. :1–6.
.
2018. Multiple-input multiple-output (MIMO) techniques are currently the de facto approach for increasing the capacity and reliability of communication systems. Spatial modulation (SM) is presently one of the most eminent MIMO techniques. As, it combines the advantages of having higher spectral efficiency than repetition coding (RC) while overcoming the inter-channel interference (ICI) faced by spatial multiplexing (SMP). Moreover, SM reduces system complexity. In this paper, for the first time in literature, the use of MIMO techniques is explored in Internet-of-Things(IoT) deployments by introducing a novel technique called security aware spatial modulation (SA-SM).SA-SM provides a low complexity, secure and spectrally efficient technique that harvests the advantages of SM, while facing the arising security concerns of IoT systems. Using an undemanding modification at the receiver, SA-SM gives an extra degree of technology independent physical layer security. Our results show that SA-SM forces the bit-error-rate (BER) of an eavesdropper to not exceed the range of 10-2, which is below the forward-error-correction (FEC) threshold. Hence, it eradicates the ability of an eavesdropper to properly decode the transmitted signal. Additionally, the efficiency of SA-SM is verified in both the radio and visible light ranges. Furthermore, SA-SM is capable of reducing the peak-to-average-power-ratio (PAPR) by 26.2%.