Visible to the public Biblio

Filters: Keyword is quick UDP Internet connections  [Clear All Filters]
2020-06-19
Garrido, Pablo, Sanchez, Isabel, Ferlin, Simone, Aguero, Ramon, Alay, Ozgu.  2019.  Poster: rQUIC - integrating FEC with QUIC for robust wireless communications. 2019 IFIP Networking Conference (IFIP Networking). :1—2.

Quick UDP Internet Connections (QUIC) is an experimental transport protocol designed to primarily reduce connection establishment and transport latency, as well as to improve security standards with default end-to-end encryption in HTTPbased applications. QUIC is a multiplexed and secure transport protocol fostered by Google and its design emerged from the urgent need of innovation in the transport layer, mainly due to difficulties extending TCP and deploying new protocols. While still under standardisation, a non-negligble fraction of the Internet's traffic, more than 7% of a European Tier1-ISP, is already running over QUIC and it constitutes more than 30% of Google's egress traffic [1].

Michel, François, De Coninck, Quentin, Bonaventure, Olivier.  2019.  QUIC-FEC: Bringing the benefits of Forward Erasure Correction to QUIC. 2019 IFIP Networking Conference (IFIP Networking). :1—9.

Originally implemented by Google, QUIC gathers a growing interest by providing, on top of UDP, the same service as the classical TCP/TLS/HTTP/2 stack. The IETF will finalise the QUIC specification in 2019. A key feature of QUIC is that almost all its packets, including most of its headers, are fully encrypted. This prevents eavesdropping and interferences caused by middleboxes. Thanks to this feature and its clean design, QUIC is easier to extend than TCP. In this paper, we revisit the reliable transmission mechanisms that are included in QUIC. More specifically, we design, implement and evaluate Forward Erasure Correction (FEC) extensions to QUIC. These extensions are mainly intended for high-delays and lossy communications such as In-Flight Communications. Our design includes a generic FEC frame and our implementation supports the XOR, Reed-Solomon and Convolutional RLC error-correcting codes. We also conservatively avoid hindering the loss-based congestion signal by distinguishing the packets that have been received from the packets that have been recovered by the FEC. We evaluate its performance by applying an experimental design covering a wide range of delay and packet loss conditions with reproducible experiments. These confirm that our modular design allows the protocol to adapt to the network conditions. For long data transfers or when the loss rate and delay are small, the FEC overhead negatively impacts the download completion time. However, with high packet loss rates and long delays or smaller files, FEC allows drastically reducing the download completion time by avoiding costly retransmission timeouts. These results show that there is a need to use FEC adaptively to the network conditions.