Visible to the public Biblio

Filters: Keyword is GCN  [Clear All Filters]
2023-09-18
Ding, Zhenquan, Xu, Hui, Guo, Yonghe, Yan, Longchuan, Cui, Lei, Hao, Zhiyu.  2022.  Mal-Bert-GCN: Malware Detection by Combining Bert and GCN. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :175—183.
With the dramatic increase in malicious software, the sophistication and innovation of malware have increased over the years. In particular, the dynamic analysis based on the deep neural network has shown high accuracy in malware detection. However, most of the existing methods only employ the raw API sequence feature, which cannot accurately reflect the actual behavior of malicious programs in detail. The relationship between API calls is critical for detecting suspicious behavior. Therefore, this paper proposes a malware detection method based on the graph neural network. We first connect the API sequences executed by different processes to build a directed process graph. Then, we apply Bert to encode the API sequences of each process into node embedding, which facilitates the semantic execution information inside the processes. Finally, we employ GCN to mine the deep semantic information based on the directed process graph and node embedding. In addition to presenting the design, we have implemented and evaluated our method on 10,000 malware and 10,000 benign software datasets. The results show that the precision and recall of our detection model reach 97.84% and 97.83%, verifying the effectiveness of our proposed method.
2023-06-29
Wang, Zhichao.  2022.  Deep Learning Methods for Fake News Detection. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :472–475.

Nowadays, although it is much more convenient to obtain news with social media and various news platforms, the emergence of all kinds of fake news has become a headache and urgent problem that needs to be solved. Currently, the fake news recognition algorithm for fake news mainly uses GCN, including some other niche algorithms such as GRU, CNN, etc. Although all fake news verification algorithms can reach quite a high accuracy with sufficient datasets, there is still room for improvement for unsupervised learning and semi-supervised. This article finds that the accuracy of the GCN method for fake news detection is basically about 85% through comparison with other neural network models, which is satisfactory, and proposes that the current field lacks a unified training dataset, and that in the future fake news detection models should focus more on semi-supervised learning and unsupervised learning.

2023-02-24
Coleman, Jared, Kiamari, Mehrdad, Clark, Lillian, D'Souza, Daniel, Krishnamachari, Bhaskar.  2022.  Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1070—1075.
Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms.
2020-06-26
Jiang, Jianguo, Chen, Jiuming, Gu, Tianbo, Choo, Kim-Kwang Raymond, Liu, Chao, Yu, Min, Huang, Weiqing, Mohapatra, Prasant.  2019.  Anomaly Detection with Graph Convolutional Networks for Insider Threat and Fraud Detection. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :109—114.

Anomaly detection generally involves the extraction of features from entities' or users' properties, and the design of anomaly detection models using machine learning or deep learning algorithms. However, only considering entities' property information could lead to high false positives. We posit the importance of also considering connections or relationships between entities in the detecting of anomalous behaviors and associated threat groups. Therefore, in this paper, we design a GCN (graph convolutional networks) based anomaly detection model to detect anomalous behaviors of users and malicious threat groups. The GCN model could characterize entities' properties and structural information between them into graphs. This allows the GCN based anomaly detection model to detect both anomalous behaviors of individuals and associated anomalous groups. We then evaluate the proposed model using a real-world insider threat data set. The results show that the proposed model outperforms several state-of-art baseline methods (i.e., random forest, logistic regression, SVM, and CNN). Moreover, the proposed model can also be applied to other anomaly detection applications.