Visible to the public Biblio

Filters: Keyword is Manuals  [Clear All Filters]
2023-09-20
Preeti, Agrawal, Animesh Kumar.  2022.  A Comparative Analysis of Open Source Automated Malware Tools. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :226—230.
Malwares are designed to cause harm to the machine without the user's knowledge. Malwares belonging to different families infect the system in its own unique way causing damage which could be irreversible and hence there is a need to detect and analyse the malwares. Manual analysis of all types of malwares is not a practical approach due to the huge effort involved and hence Automated Malware Analysis is resorted to so that the burden on humans can be decreased and the process is made robust. A lot of Automated Malware Analysis tools are present right now both offline and online but the problem arises as to which tool to select while analysing a suspicious binary. A comparative analysis of three most widely used automated tools has been done with different malware class samples. These tools are Cuckoo Sandbox, Any. Run and Intezer Analyze. In order to check the efficacy of the tool in both online and offline analysis, Cuckoo Sandbox was configured for offline use, and Any. Run and Intezer Analyze were configured for online analysis. Individual tools analyse each malware sample and after analysis is completed, a comparative chart is prepared to determine which tool is good at finding registry changes, processes created, files created, network connections, etc by the malicious binary. The findings conclude that Intezer Analyze tool recognizes file changes better than others but otherwise Cuckoo Sandbox and Any. Run tools are better in determining other functionalities.
2023-09-18
Dvorak, Stepan, Prochazka, Pavel, Bajer, Lukas.  2022.  GNN-Based Malicious Network Entities Identification In Large-Scale Network Data. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1—4.
A reliable database of Indicators of Compromise (IoC’s) is a cornerstone of almost every malware detection system. Building the database and keeping it up-to-date is a lengthy and often manual process where each IoC should be manually reviewed and labeled by an analyst. In this paper, we focus on an automatic way of identifying IoC’s intended to save analysts’ time and scale to the volume of network data. We leverage relations of each IoC to other entities on the internet to build a heterogeneous graph. We formulate a classification task on this graph and apply graph neural networks (GNNs) in order to identify malicious domains. Our experiments show that the presented approach provides promising results on the task of identifying high-risk malware as well as legitimate domains classification.
Cao, Michael, Ahmed, Khaled, Rubin, Julia.  2022.  Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1919—1931.
This paper provides an in-depth analysis of Android malware that bypassed the strictest defenses of the Google Play application store and penetrated the official Android market between January 2016 and July 2021. We systematically identified 1,238 such malicious applications, grouped them into 134 families, and manually analyzed one application from 105 distinct families. During our manual analysis, we identified malicious payloads the applications execute, conditions guarding execution of the payloads, hiding techniques applications employ to evade detection by the user, and other implementation-level properties relevant for automated malware detection. As most applications in our dataset contain multiple payloads, each triggered via its own complex activation logic, we also contribute a graph-based representation showing activation paths for all application payloads in form of a control- and data-flow graph. Furthermore, we discuss the capabilities of existing malware detection tools, put them in context of the properties observed in the analyzed malware, and identify gaps and future research directions. We believe that our detailed analysis of the recent, evasive malware will be of interest to researchers and practitioners and will help further improve malware detection tools.
2023-09-08
Li, Bo, Jia, Yupeng, Jin, Chengxue.  2022.  Research on the Efficiency Factors Affecting Airport Security Check Based on Intelligent Passenger Security Check Equipment. 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE). :459–464.
In the field of airport passenger security, a new type of security inspection equipment called intelligent passenger security equipment is applied widely, which can significantly improve the efficiency of airport security screening and passenger satisfaction. This paper establishes a security check channel model based on intelligent passenger security check equipment, and studies the factors affecting the efficiency of airport security screening, such as the number of baggage unloading points, baggage loading points, secondary inspection points, etc. A simulation model of security check channel is established based on data from existing intelligent passenger security check equipment and data collected from Beijing Daxing Airport. Equipment utilization and queue length data is obtained by running the simulation model. According to the data, the bottleneck is that the manual inspection process takes too long, and the utilization rate of the baggage unloading point is too low. For the bottleneck link, an optimization scheme is proposed. With more manual check points and secondary inspection points and less baggage unloading points, the efficiency of airport security screening significantly increases by running simulation model. Based on the optimized model, the effect of baggage unloading point and baggage loading point on efficiency is further studied. The optimal parameter configuration scheme under the expected efficiency is obtained. This research can assist engineers to find appropriate equipment configuration quickly and instruct the airport to optimize the arrangement of security staff, which can effectively improve the efficiency of airport security screening and reduce the operating costs of airport.
2023-09-07
Fowze, Farhaan, Choudhury, Muhtadi, Forte, Domenic.  2022.  EISec: Exhaustive Information Flow Security of Hardware Intellectual Property Utilizing Symbolic Execution. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Hardware IPs are assumed to be roots-of-trust in complex SoCs. However, their design and security verification are still heavily dependent on manual expertise. Extensive research in this domain has shown that even cryptographic modules may lack information flow security, making them susceptible to remote attacks. Further, when an SoC is in the hands of the attacker, physical attacks such as fault injection are possible. This paper introduces EISec, a novel tool utilizing symbolic execution for exhaustive analysis of hardware IPs. EISec operates at the pre-silicon stage on the gate level netlist of a design. It detects information flow security violations and generates the exhaustive set of control sequences that reproduces them. We further expand its capabilities to quantify the confusion and diffusion present in cryptographic modules and to analyze an FSM's susceptibility to fault injection attacks. The proposed methodology efficiently explores the complete input space of designs utilizing symbolic execution. In short, EISec is a holistic security analysis tool to help hardware designers capture security violations early on and mitigate them by reporting their triggers.
2023-08-11
Suwandi, Rifki, Wuryandari, Aciek Ida.  2022.  A Safe Approach to Sensitive Dropout Data Collection Systems by Utilizing Homomorphic Encryption. 2022 International Symposium on Information Technology and Digital Innovation (ISITDI). :168—171.
The student's fault is not the only cause of dropping out of school. Often, cases of dropping out of school are only associated with too general problems. However, sensitive issues that can be detrimental to certain parties in this regard, such as the institution's reputation, are usually not made public. To overcome this, an in-depth analysis of these cases is needed for proper handling. Many risks are associated with creating a single repository for this sensitive information. Therefore, some encryption is required to ensure data is not leaked. However, encryption at rest and in transit is insufficient as data leakage is a considerable risk during processing. In addition, there is also a risk of abuse of authority by insiders so that no single entity is allowed to have access to all data. Homomorphic encryption presents a viable solution to this challenge. Data may be aggregated under the security provided by Homomorphic Encryption. This method makes the data available for computation without being decrypted first and without paying the risk of having a single repository.
2023-07-21
Liao, Mancheng.  2022.  Establishing a Knowledge Base of an Expert System for Criminal Investigation. 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :562—566.
In the information era, knowledge is becoming increasingly significant for all industries, especially criminal investigation that deeply relies on intelligence and strategies. Therefore, there is an urgent need for effective management and utilization of criminal investigation knowledge. As an important branch of knowledge engineering, the expert system can simulate the thinking pattern of an expert, proposing strategies and solutions based on the knowledge stored in the knowledge base. A crucial step in building the expert system is to construct the knowledge base, which determines the function and capability of the expert system. This paper establishes a practical knowledge base for criminal investigation, combining the technologies of cloud computing with traditional method of manual entry to acquire and process knowledge. The knowledge base covers data information and expert knowledge with detailed classification of rules and cases, providing answers through comparison and reasoning. The knowledge becomes more accurate and reliable after repeated inspection and verification by human experts.
2023-07-19
Voulgaris, Konstantinos, Kiourtis, Athanasios, Karamolegkos, Panagiotis, Karabetian, Andreas, Poulakis, Yannis, Mavrogiorgou, Argyro, Kyriazis, Dimosthenis.  2022.  Data Processing Tools for Graph Data Modelling Big Data Analytics. 2022 13th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter). :208—212.
Any Big Data scenario eventually reaches scalability concerns for several factors, often storage or computing power related. Modern solutions have been proven to be effective in multiple domains and have automated many aspects of the Big Data pipeline. In this paper, we aim to present a solution for deploying event-based automated data processing tools for low code environments that aim to minimize the need for user input and can effectively handle common data processing jobs, as an alternative to distributed solutions which require language specific libraries and code. Our architecture uses a combination of a network exposed service with a cluster of “Data Workers” that handle data processing jobs effectively without requiring manual input from the user. This system proves to be effective at handling most data processing scenarios and allows for easy expandability by following simple patterns when declaring any additional jobs.
2023-07-13
Kaliyaperumal, Karthikeyan, Sammy, F..  2022.  An Efficient Key Generation Scheme for Secure Sharing of Patients Health Records using Attribute Based Encryption. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Attribute Based Encryption that solely decrypts the cipher text's secret key attribute. Patient information is maintained on trusted third party servers in medical applications. Before sending health records to other third party servers, it is essential to protect them. Even if data are encrypted, there is always a danger of privacy violation. Scalability problems, access flexibility, and account revocation are the main security challenges. In this study, individual patient health records are encrypted utilizing a multi-authority ABE method that permits a multiple number of authorities to govern the attributes. A strong key generation approach in the classic Attribute Based Encryption is proposed in this work, which assures the robust protection of health records while also demonstrating its effectiveness. Simulation is done by using CloudSim Simulator and Statistical reports were generated using Cloud Reports. Efficiency, computation time and security of our proposed scheme are evaluated. The simulation results reveal that the proposed key generation technique is more secure and scalable.
2023-06-09
Qiang, Weizhong, Luo, Hao.  2022.  AutoSlicer: Automatic Program Partitioning for Securing Sensitive Data Based-on Data Dependency Analysis and Code Refactoring. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :239—247.
Legacy programs are normally monolithic (that is, all code runs in a single process and is not partitioned), and a bug in a program may result in the entire program being vulnerable and therefore untrusted. Program partitioning can be used to separate a program into multiple partitions, so as to isolate sensitive data or privileged operations. Manual program partitioning requires programmers to rewrite the entire source code, which is cumbersome, error-prone, and not generic. Automatic program partitioning tools can separate programs according to the dependency graph constructed based on data or programs. However, programmers still need to manually implement remote service interfaces for inter-partition communication. Therefore, in this paper, we propose AutoSlicer, whose purpose is to partition a program more automatically, so that the programmer is only required to annotate sensitive data. AutoSlicer constructs accurate data dependency graphs (DDGs) by enabling execution flow graphs, and the DDG-based partitioning algorithm can compute partition information based on sensitive annotations. In addition, the code refactoring toolchain can automatically transform the source code into sensitive and insensitive partitions that can be deployed on the remote procedure call framework. The experimental evaluation shows that AutoSlicer can effectively improve the accuracy (13%-27%) of program partitioning by enabling EFG, and separate real-world programs with a relatively smaller performance overhead (0.26%-9.42%).
2023-05-12
Jain, Raghav, Saha, Tulika, Chakraborty, Souhitya, Saha, Sriparna.  2022.  Domain Infused Conversational Response Generation for Tutoring based Virtual Agent. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Recent advances in deep learning typically, with the introduction of transformer based models has shown massive improvement and success in many Natural Language Processing (NLP) tasks. One such area which has leveraged immensely is conversational agents or chatbots in open-ended (chit-chat conversations) and task-specific (such as medical or legal dialogue bots etc.) domains. However, in the era of automation, there is still a dearth of works focused on one of the most relevant use cases, i.e., tutoring dialog systems that can help students learn new subjects or topics of their interest. Most of the previous works in this domain are either rule based systems which require a lot of manual efforts or are based on multiple choice type factual questions. In this paper, we propose EDICA (Educational Domain Infused Conversational Agent), a language tutoring Virtual Agent (VA). EDICA employs two mechanisms in order to converse fluently with a student/user over a question and assist them to learn a language: (i) Student/Tutor Intent Classification (SIC-TIC) framework to identify the intent of the student and decide the action of the VA, respectively, in the on-going conversation and (ii) Tutor Response Generation (TRG) framework to generate domain infused and intent/action conditioned tutor responses at every step of the conversation. The VA is able to provide hints, ask questions and correct student's reply by generating an appropriate, informative and relevant tutor response. We establish the superiority of our proposed approach on various evaluation metrics over other baselines and state of the art models.
ISSN: 2161-4407
2023-05-11
Karayat, Ritik, Jadhav, Manish, Kondaka, Lakshmi Sudha, Nambiar, Ashwath.  2022.  Web Application Penetration Testing & Patch Development Using Kali Linux. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1392–1397.
Nowadays, safety is a first-rate subject for all applications. There has been an exponential growth year by year in the number of businesses going digital since the few decades following the birth of the Internet. In these technologically advanced times, cyber security is a must mainly for internet applications, so we have the notion of diving deeper into the Cyber security domain and are determined to make a complete project. We aim to develop a website portal for ease of communication between us and the end user. Utilizing the power of python scripting and flask server to make independent automated tools for detection of SQLI, XSS & a Spider(Content Discovery Tool). We have also integrated skipfish as a website vulnerability scanner to our project using python and Kali Linux. Since conducting a penetration test on another website without permission is not legal, we thought of building a dummy website prone to OS Command Injection in addition to the above-mentioned attacks. A well-documented report will be generated after the penetration test/ vulnerability scan. In case the website is vulnerable, patching of the website will be done with the user's consent.
ISSN: 2575-7288
2023-04-28
Jiang, Zhenghong.  2022.  Source Code Vulnerability Mining Method based on Graph Neural Network. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :1177–1180.
Vulnerability discovery is an important field of computer security research and development today. Because most of the current vulnerability discovery methods require large-scale manual auditing, and the code parsing process is cumbersome and time-consuming, the vulnerability discovery effect is reduced. Therefore, for the uncertainty of vulnerability discovery itself, it is the most basic tool design principle that auxiliary security analysts cannot completely replace them. The purpose of this paper is to study the source code vulnerability discovery method based on graph neural network. This paper analyzes the three processes of data preparation, source code vulnerability mining and security assurance of the source code vulnerability mining method, and also analyzes the suspiciousness and particularity of the experimental results. The empirical analysis results show that the types of traditional source code vulnerability mining methods become more concise and convenient after using graph neural network technology, and we conducted a survey and found that more than 82% of people felt that the design source code vulnerability mining method used When it comes to graph neural networks, it is found that the design efficiency has become higher.
2023-04-14
Shao, Rulin, Shi, Zhouxing, Yi, Jinfeng, Chen, Pin-Yu, Hsieh, Cho-Jui.  2022.  Robust Text CAPTCHAs Using Adversarial Examples. 2022 IEEE International Conference on Big Data (Big Data). :1495–1504.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with font and background images respectively sampled from font and image libraries, and they are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we utilize a highly transferable adversarial attack designed for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, as well as various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarially trained CAPTCHA solvers and solvers trained with collected RTCs using manual annotation. Codes available at https://github.com/RulinShao/RTC.
2023-03-03
Zhang, Fengbin, Liu, Xingwei, Wei, Zechen, Zhang, Jiali, Yang, Nan, Song, Xuri.  2022.  Key Feature Mining Method for Power-Cut Window Based on Grey Relational Analysis. 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 5:595–598.
In the process of compiling the power-cut window period of the power grid equipment maintenance plan, problems such as omission of constraints are prone to occur due to excessive reliance on manual experience. In response to these problems, this paper proposes a method for mining key features of the power-cut window based on grey relational analysis. Through mining and analysis of the historical operation data of the power grid, the operation data of new energy, and the historical power-cut information of equipment, the indicators that play a key role in the arrangement of the outage window period of the equipment maintenance plan are found. Then use the key indicator information to formulate the window period. By mining the relationship between power grid operation data and equipment power outages, this paper can give full play to the big data advantages of the power grid, improve the accuracy and efficiency of the power-cut window period.
2023-02-03
Feng, Jinliu, Wang, Yaofei, Chen, Kejiang, Zhang, Weiming, Yu, Nenghai.  2022.  An Effective Steganalysis for Robust Steganography with Repetitive JPEG Compression. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3084–3088.
With the development of social networks, traditional covert communication requires more consideration of lossy processes of Social Network Platforms (SNPs), which is called robust steganography. Since JPEG compression is a universal processing of SNPs, a method using repeated JPEG compression to fit transport channel matching is recently proposed and shows strong compression-resist performance. However, the repeated JPEG compression will inevitably introduce other artifacts into the stego image. Using only traditional steganalysis methods does not work well towards such robust steganography under low payload. In this paper, we propose a simple and effective method to detect the mentioned steganography by chasing both steganographic perturbations as well as continuous compression artifacts. We introduce compression-forensic features as a complement to steganalysis features, and then use the ensemble classifier for detection. Experiments demonstrate that this method owns a similar and better performance with respect to both traditional and neural-network-based steganalysis.
ISSN: 2379-190X
2023-02-02
Mansoor, Niloofar, Muske, Tukaram, Serebrenik, Alexander, Sharif, Bonita.  2022.  An Empirical Assessment on Merging and Repositioning of Static Analysis Alarms. 2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM). :219–229.
Static analysis tools generate a large number of alarms that require manual inspection. In prior work, repositioning of alarms is proposed to (1) merge multiple similar alarms together and replace them by a fewer alarms, and (2) report alarms as close as possible to the causes for their generation. The premise is that the proposed merging and repositioning of alarms will reduce the manual inspection effort. To evaluate the premise, this paper presents an empirical study with 249 developers on the proposed merging and repositioning of static alarms. The study is conducted using static analysis alarms generated on \$C\$ programs, where the alarms are representative of the merging vs. non-merging and repositioning vs. non-repositioning situations in real-life code. Developers were asked to manually inspect and determine whether assertions added corresponding to alarms in \$C\$ code hold. Additionally, two spatial cognitive tests are also done to determine relationship in performance. The empirical evaluation results indicate that, in contrast to expectations, there was no evidence that merging and repositioning of alarms reduces manual inspection effort or improves the inspection accuracy (at times a negative impact was found). Results on cognitive abilities correlated with comprehension and alarm inspection accuracy.
2023-01-20
Jiang, Baoxiang, Liu, Yang, Liu, Huixiang, Ren, Zehua, Wang, Yun, Bao, Yuanyi, Wang, Wenqing.  2022.  An Enhanced EWMA for Alert Reduction and Situation Awareness in Industrial Control Networks. 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE). :888–894.

Intrusion detection systems (IDSs) are widely deployed in the industrial control systems to protect network security. IDSs typically generate a huge number of alerts, which are time-consuming for system operators to process. Most of the alerts are individually insignificant false alarms. However, it is not the best solution to discard these alerts, as they can still provide useful information about network situation. Based on the study of characteristics of alerts in the industrial control systems, we adopt an enhanced method of exponentially weighted moving average (EWMA) control charts to help operators in processing alerts. We classify all detection signatures as regular and irregular according to their frequencies, set multiple control limits to detect anomalies, and monitor regular signatures for network security situational awareness. Extensive experiments have been performed using real-world alert data. Simulation results demonstrate that the proposed enhanced EWMA method can greatly reduce the volume of alerts to be processed while reserving significant abnormal information.

Kim, Yeongwoo, Dán, György.  2022.  An Active Learning Approach to Dynamic Alert Prioritization for Real-time Situational Awareness. 2022 IEEE Conference on Communications and Network Security (CNS). :154–162.

Real-time situational awareness (SA) plays an essential role in accurate and timely incident response. Maintaining SA is, however, extremely costly due to excessive false alerts generated by intrusion detection systems, which require prioritization and manual investigation by security analysts. In this paper, we propose a novel approach to prioritizing alerts so as to maximize SA, by formulating the problem as that of active learning in a hidden Markov model (HMM). We propose to use the entropy of the belief of the security state as a proxy for the mean squared error (MSE) of the belief, and we develop two computationally tractable policies for choosing alerts to investigate that minimize the entropy, taking into account the potential uncertainty of the investigations' results. We use simulations to compare our policies to a variety of baseline policies. We find that our policies reduce the MSE of the belief of the security state by up to 50% compared to static baseline policies, and they are robust to high false alert rates and to the investigation errors.

2023-01-06
Dhiman, Bhavya, Bose S, Rubin.  2022.  A Reliable, Secure and Efficient Decentralised Conditional of KYC Verification System: A Blockchain Approach. 2022 International Conference on Edge Computing and Applications (ICECAA). :564—570.
KYC or Know Your Customer is the procedure to verify the individuality of its consumers & evaluating the possible dangers of illegitimate trade relations. A few problems with the existing KYC manual process are that it is less secure, time-consuming and expensive. With the advent of Blockchain technology, its structures such as consistency, security, and geographical diversity make them an ideal solution to such problems. Although marketing solutions such as KYC-chain.co, K-Y-C. The legal right to enable blockchain-based KYC authentication provides a way for documents to be verified by a trusted network participant. This project uses an ETHereum based Optimised KYC Block-chain system with uniform A-E-S encryption and compression built on the LZ method. The system publicly verifies a distributed encryption, is protected by cryptography, operates by pressing the algorithm and is all well-designed blockchain features. The suggested scheme is a novel explanation based on Distributed Ledger Technology or Blockchain technology that would cut KYC authentication process expenses of organisations & decrease the regular schedule for completion of the procedure whilst becoming easier for clients. The largest difference in the system in traditional methods is the full authentication procedure is performed in just no time for every client, regardless of the number of institutions you desire to be linked to. Furthermore, since DLT is employed, validation findings may be securely distributed to consumers, enhancing transparency. Based on this method, a Proof of Concept (POC) is produced with Ethereum's API, websites as endpoints and the android app as the front office, recognising the viability and efficacy of this technique. Ultimately, this strategy enhances consumer satisfaction, lowers budget overrun & promotes transparency in the customer transport network.
2022-12-09
Lin, Yuhang, Tunde-Onadele, Olufogorehan, Gu, Xiaohui, He, Jingzhu, Latapie, Hugo.  2022.  SHIL: Self-Supervised Hybrid Learning for Security Attack Detection in Containerized Applications. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :41—50.
Container security has received much research attention recently. Previous work has proposed to apply various machine learning techniques to detect security attacks in containerized applications. On one hand, supervised machine learning schemes require sufficient labelled training data to achieve good attack detection accuracy. On the other hand, unsupervised machine learning methods are more practical by avoiding training data labelling requirements, but they often suffer from high false alarm rates. In this paper, we present SHIL, a self-supervised hybrid learning solution, which combines unsupervised and supervised learning methods to achieve high accuracy without requiring any manual data labelling. We have implemented a prototype of SHIL and conducted experiments over 41 real world security attacks in 28 commonly used server applications. Our experimental results show that SHIL can reduce false alarms by 39-91% compared to existing supervised or unsupervised machine learning schemes while achieving a higher or similar detection rate.
2022-11-18
Paramitha, Ranindya, Asnar, Yudistira Dwi Wardhana.  2021.  Static Code Analysis Tool for Laravel Framework Based Web Application. 2021 International Conference on Data and Software Engineering (ICoDSE). :1–6.
To increase and maintain web application security, developers could use some different methods, one of them is static code analysis. This method could find security vulnerabilities inside a source code without the need of running the program. It could also be automated by using tools, which considered more efficient than manual reviews. One specific method which is commonly used in static code analysis is taint analysis. Taint analysis usually utilizes source code modeling to prepare the code for analysis process to detect any untrusted data flows into security sensitives computations. While this kind of analysis could be very helpful, static code analysis tool for Laravel-based web application is still quite rare, despite its popularity. Therefore, in this research, we want to know how static code (taint) analysis could be utilized to detect security vulnerabilities and how the projects (Laravel-based) should be modeled in order to facilitate this analysis. We then developed a static analysis tool, which models the application’s source code using AST and dictionary to be used as the base of the taint analysis. The tool first parsed the route file of Laravel project to get a list of controller files. Each file in that list would be parsed in order to build the source code representation, before actually being analyzed using taint analysis method. The experiments was done using this tool shows that the tools (with taint analysis) could detect 13 security vulnerabilities from 6 Laravel-based projects with one False Negative. An ineffective sanitizer was the suspected cause of this False Negative. This also shows that proposed modeling technique could be helpful in facilitating taint analysis in Laravel-based projects. For future development and studies, this tool should be tested with more Laravel and even other framework based web application with a wider range of security vulnerabilities.
Alfassa, Shaik Mirra, Nagasundari, S, Honnavalli, Prasad B.  2021.  Invasion Analysis of Smart Meter In AMI System. 2021 IEEE Mysore Sub Section International Conference (MysuruCon). :831—836.
Conventional systems has to be updated as the technology advances at quick pace. A smart grid is a renovated and digitalized version of a standard electrical infrastructure that allows two-way communication between customers and the utility, which overcomes huge manual hustle. Advanced Metering Infrastructure plays a major role in a smart grid by automatically reporting the power consumption readings to the utility through communication networks. However, there is always a trade-off. Security of AMI communication is a major problem that must be constantly monitored if this technology is to be fully utilized. This paper mainly focuses on developing a virtual setup of fully functional smart meter and a web application for generating electricity bill which allows consumer to obtain demand response, where the data is managed at server side. It also focuses on analyzing the potential security concerns posed by MITM-Arp-spoofing attacks on AMI systems and session hijacking attacks on web interfaces. This work also focusses on mitigating the vulnerabilities of session hijacking on web interface by restricting the cookies so that the attacker is unable to acquire any confidential data.
Li, Shuang, Zhang, Meng, Li, Che, Zhou, Yue, Wang, Kanghui, Deng, Yaru.  2021.  Mobile APP Personal Information Security Detection and Analysis. 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS). :82—87.
Privacy protection is a vital part of information security. However, the excessive collections and uses of personal information have intensified in the area of mobile apps (applications). To comprehend the current situation of APP personal information security problem of APP, this paper uses a combined approach of static analysis technology, dynamic analysis technology, and manual review to detect and analyze the installed file of mobile apps. 40 mobile apps are detected as experimental samples. The results demonstrate that this combined approach can effectively detect various issues of personal information security problem in mobile apps. Statistics analysis of the experimental results demonstrate that mobile apps have outstanding problems in some aspects of personal information security such as privacy policy, permission application, information collection, data storage, etc.
2022-10-16
Hauschild, Florian, Garb, Kathrin, Auer, Lukas, Selmke, Bodo, Obermaier, Johannes.  2021.  ARCHIE: A QEMU-Based Framework for Architecture-Independent Evaluation of Faults. 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :20–30.
Fault injection is a major threat to embedded system security since it can lead to modified control flows and leakage of critical security parameters, such as secret keys. However, injecting physical faults into devices is cumbersome and difficult since it requires a lot of preparation and manual inspection of the assembly instructions. Furthermore, a single fault injection method cannot cover all possible fault types. Simulating fault injection in comparison, is, in general, less costly, more time-efficient, and can cover a large amount of possible fault combinations. Hence, many different fault injection tools have been developed for this purpose. However, previous tools have several drawbacks since they target only individual architectures or cover merely a limited amount of the possible fault types for only specific memory types. In this paper, we present ARCHIE, a QEMU-based architecture-independent fault evaluation tool, that is able to simulate transient and permanent instruction and data faults in RAM, flash, and processor registers. ARCHIE supports dynamic code analysis and parallelized execution. It makes use of the Tiny Code Generator (TCG) plugin, which we extended with our fault plugin to enable read and write operations from and to guest memory. We demonstrate ARCHIE’s capabilities through automatic binary analysis of two exemplary applications, TinyAES and a secure bootloader, and validate our tool’s results in a laser fault injection experiment. We show that ARCHIE can be run both on a server with extensive resources and on a common laptop. ARCHIE can be applied to a wide range of use cases for analyzing and enhancing open source and proprietary firmware in white, grey, or black box tests.