Biblio
The advanced persistent threat (APT) landscape has been studied without quantifiable data, for which indicators of compromise (IoC) may be uniformly analyzed, replicated, or used to support security mechanisms. This work culminates extensive academic and industry APT analysis, not as an incremental step in existing approaches to APT detection, but as a new benchmark of APT related opportunity. We collect 15,259 APT IoC hashes, retrieving subsequent sandbox execution logs across 41 different file types. This work forms an initial focus on Windows-based threat detection. We present a novel Windows APT executable (APT-EXE) dataset, made available to the research community. Manual and statistical analysis of the APT-EXE dataset is conducted, along with supporting feature analysis. We draw upon repeat and common APT paths access, file types, and operations within the APT-EXE dataset to generalize APT execution footprints. A baseline case analysis successfully identifies a majority of 117 of 152 live APT samples from campaigns across 2018 and 2019.
JavaScript is a popular attack vector for releasing malicious payloads on unsuspecting Internet users. Authors of this malicious JavaScript often employ numerous obfuscation techniques in order to prevent the automatic detection by antivirus and hinder manual analysis by professional malware analysts. Consequently, this paper presents SAFE-DEOBS, a JavaScript deobfuscation tool that we have built. The aim of SAFE-DEOBS is to automatically deobfuscate JavaScript malware such that an analyst can more rapidly determine the malicious script's intent. This is achieved through a number of static analyses, inspired by techniques from compiler theory. We demonstrate the utility of SAFE-DEOBS through a case study on real-world JavaScript malware, and show that it is a useful addition to a malware analyst's toolset.
Superconducting technology is being seriously explored for certain applications. We propose a new clean-slate method to derive fault models from large numbers of simulation results. For this technology, our method identifies completely new fault models – overflow, pulse-escape, and pattern-sensitive – in addition to the well-known stuck-at faults.
Security has become the vital component of today's technology. People wish to safeguard their valuable items in bank lockers. With growing technology most of the banks have replaced the manual lockers by digital lockers. Even though there are numerous biometric approaches, these are not robust. In this work we propose a new approach for personal biometric identification based on features extracted from ECG.
Cloud-based payments, virtual car keys, and digital rights management are examples of consumer electronics applications that use secure software. White-box implementations of the Advanced Encryption Standard (AES) are important building blocks of secure software systems, and the attack of Billet, Gilbert, and Ech-Chatbi (BGE) is a well-known attack on such implementations. A drawback from the adversary’s or security tester’s perspective is that manual reverse engineering of the implementation is required before the BGE attack can be applied. This paper presents a method to automate the BGE attack on a class of white-box AES implementations with a specific type of external encoding. The new method was implemented and applied successfully to a CHES 2016 capture the flag challenge.
Black-box web application scanners are used to detect vulnerabilities in the web application without any knowledge of the source code. Recent research had shown their poor performance in detecting stored Cross-Site Scripting (XSS) and stored SQL Injection (SQLI). The detection efficiency of four black-box scanners on two testbeds, Wackopicko and Custom testbed Scanit (obtained from [5]), have been analyzed in this paper. The analysis showed that the scanners need to be improved for better detection of multi-step stored XSS and stored SQLI. This study involves the interaction between the selected scanners and the web application to measure their efficiency of inserting proper attack vectors in appropriate fields. The results of this research paper indicate that there is not much difference in terms of performance between open-source and commercial black-box scanners used in this research. However, it may depend on the policies and trust issues of the companies using them according to their needs. Some of the possible recommendations are provided to improve the detection rate of stored SQLI and stored XSS vulnerabilities in this paper. The study concludes that the state-of-the-art of automated black-box web application scanners in 2020 needs to be improved to detect stored XSS and stored SQLI more effectively.
Nowadays, Microblog has become an important online social networking platform, and a large number of users share information through Microblog. Many malicious users have released various false news driven by various interests, which seriously affects the availability of Microblog platform. Therefore, the evaluation of Microblog user credibility has become an important research issue. This paper proposes a microblog user credibility evaluation algorithm based on trust propagation. In view of the high consumption and low precision caused by malicious users' attacking algorithms and manual selection of seed sets by establishing false social relationships, this paper proposes two optimization strategies: pruning algorithm based on social activity and similarity and based on The seed node selection algorithm of clustering. The pruning algorithm can trim off the attack edges established by malicious users and normal users. The seed node selection algorithm can efficiently select the highly available seed node set, and finally use the user social relationship graph to perform the two-way propagation trust scoring, so that the low trusted user has a lower trusted score and thus identifies the malicious user. The related experiments verify the effectiveness of the trustworthiness-based user credibility evaluation algorithm in the evaluation of Microblog user credibility.
In this paper, we study trust-related human factors in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We compare three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. In the manual LOA, the human operator chooses headings for a flocking swarm, issuing new headings as needed. In the fully autonomous LOA, the swarm is redirected automatically by changing headings using a search algorithm. In the mixed-initiative LOA, if performance declines, control is switched from human to swarm or swarm to human. The result of this work extends the current knowledge on human factors in swarm supervisory control. Specifically, the finding that the relationship between trust and performance improved for passively monitoring operators (i.e., improved situation awareness in higher LOAs) is particularly novel in its contradiction of earlier work. We also discover that operators switch the degree of autonomy when their trust in the swarm system is low. Last, our analysis shows that operator's preference for a lower LOA is confirmed for a new domain of swarm control.
Malware authors are known to reuse existing code, this development process results in software evolution and a sequence of versions of a malware family containing functions that show a divergence from the initial version. This paper proposes the term evolved similarity to account for this gradual divergence of similarity across the version history of a malware family. While existing techniques are able to match functions in different versions of malware, these techniques work best when the version changes are relatively small. This paper introduces the concept of evolved similarity and presents automated Evolved Similarity Techniques (EST). EST differs from existing malware function similarity techniques by focusing on the identification of significantly modified functions in adjacent malware versions and may also be used to identify function similarity in malware samples that differ by several versions. The challenge in identifying evolved malware function pairs lies in identifying features that are relatively invariant across evolved code. The research in this paper makes use of the function call graph to establish these features and then demonstrates the use of these techniques using Zeus malware.