Biblio
This study presents spatial analysis of Dengue Fever (DF) outbreak using Geographic Information System (GIS) in the state of Selangor, Malaysia. DF is an Aedes mosquito-borne disease. The aim of the study is to map the spread of DF outbreak in Selangor by producing a risk map while the objective is to identify high risk areas of DF by producing a risk map using GIS tools. The data used was DF dengue cases in 2012 obtained from Ministry of Health, Malaysia. The analysis was carried out using Moran's I, Average Nearest Neighbor (ANN), Kernel Density Estimation (KDE) and buffer analysis using GIS. From the Moran's I analysis, the distribution pattern of DF in Selangor clustered. From the ANN analysis, the result shows a dispersed pattern where the ratio is more than 1. The third analysis was based on KDE to locate the hot spot location. The result shows that some districts are classified as high risk areas which are Ampang, Damansara, Kapar, Kajang, Klang, Semenyih, Sungai Buloh and Petaling. The buffer analysis, area ranges between 200m. to 500m. above sea level shows a clustered pattern where the highest frequent cases in the year are at the same location. It was proven that the analysis based on the spatial statistic, spatial interpolation, and buffer analysis can be used as a method in controlling and locating the DF affection with the aid of GIS.
Artificial monitoring is no longer able to match the rapid growth of cybercrime, it is in great need to develop a new spatial analysis technology which allows emergency events to get rapidly and accurately locked in real environment, furthermore, to establish correlative analysis model for cybercrime prevention strategy. On the other hand, Geography information system has been changed virtually in data structure, coordinate system and analysis model due to the “uncertainty and hyper-dimension” characteristics of network object and behavior. In this paper, the spatial rules of typical cybercrime are explored on base of GIS with Internet searching and IP tracking technology: (1) Setup spatial database through IP searching based on criminal evidence. (2)Extend GIS data-structure and spatial models, add network dimension and virtual attribution to realize dynamic connection between cyber and real space. (3)Design cybercrime monitoring and prevention system to discover the cyberspace logics based on spatial analysis.