Chen, Shengjian.
2022.
Trustworthy Internet Based on Generalized Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :5–12.
It is the key to the Internet's expansion of social and economic functions by ensuring the credibility of online users' identities and behaviors while taking into account privacy protection. Public Key Infrastructure (PKI) and blockchain technology have provided ways to achieve credibility from different perspectives. Based on these two technologies, we attempt to generalize people's offline activities to online ones with our proposed model, Atom and Molecule. We then present the strict definition of trustworthy system and the trustworthy Internet. The definition of Generalized Blockchain and its practical implementation are provided as well.
Markelon, Sam A., True, John.
2022.
The DecCert PKI: A Solution to Decentralized Identity Attestation and Zooko’s Triangle. 2022 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). :74–82.
We propose DecCert, a decentralized public key infrastructure designed as a smart contract that solves the problem of identity attestation on public blockchains. Our system allows an individual to bind an identity to a public blockchain address. Once a claim of identity is made by an individual, other users can choose to verify the attested identity based on the evidence presented by an identity claim maker by staking cryptocurrency in the DecCert smart contract. Increasing levels of trust are naturally built based upon the amount staked and the duration the collateral is staked for. This mechanism replaces the usual utilization of digital signatures in a traditional hierarchical certificate authority model or the web of trust model to form a publicly verifiable decentralized stake of trust model. We also present a novel solution to the certificate revocation problem and implement our solution on the Ethereum blockchain. Further, we show that our design solves Zooko’s triangle as defined for public key infrastructure deployments.
Sudarsan, Sreelakshmi Vattaparambil, Schelén, Olov, Bodin, Ulf, Nyström, Nicklas.
2022.
Device Onboarding in Eclipse Arrowhead Using Power of Attorney Based Authorization. 2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :26–32.
Large-scale onboarding of industrial cyber physical systems requires efficiency and security. In situations with the dynamic addition of devices (e.g., from subcontractors entering a workplace), automation of the onboarding process is desired. The Eclipse Arrowhead framework, which provides a platform for industrial automation, requires reliable, flexible, and secure device onboarding to local clouds. In this paper, we propose a device onboarding method in the Arrowhead framework where decentralized authorization is provided by Power of Attorney. The model allows users to subgrant power to trusted autonomous devices to act on their behalf. We present concepts, an implementation of the proposed system, and a use case for scalable onboarding where Powers of Attorney at two levels are used to allow a subcontractor to onboard its devices to an industrial site. We also present performance evaluation results.
ISSN: 2378-4873
Palani, Lavanya, Pandey, Anoop Kumar, Rajendran, Balaji, Bindhumadhava, B S, Sudarsan, S D.
2022.
A Study of PKI Ecosystem in South Asian and Oceania Countries. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–5.
Public Key Infrastructure (PKI) as a techno-policy ecosystem for establishing electronic trust has survived for several decades and evolved as the de-facto model for centralized trust in electronic transactions. In this paper, we study the PKI ecosystem that are prevailing in the South Asian and Oceanic countries and brief them. We also look at how PKI has coped up with the rapid technological changes and how policies have been realigned or formulated to strengthen the PKI ecosystem in these countries.
Patil, Vishwas T., Shyamasundar, R.K..
2022.
Evolving Role of PKI in Facilitating Trust. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–7.
A digital certificate is by far the most widely used artifact to establish secure electronic communication over the Internet. It certifies to its user that the public key encapsulated in it is associated with the subject of the certificate. A Public Key Infrastructure (PKI) is responsible to create, store, distribute, and revoke digital certificates. To establish a secure communication channel two unfamiliar entities rely on a common certificate issuer (a part of PKI) that vouches for both entities' certificates - thus authenticating each other via public keys listed in each other's certificates. Therefore, PKIs act as a trusted third party for two previously unfamiliar entities. Certificates are static data structures, their revocation status must be checked before usage; this step inadvertently involves a PKI for every secure channel establishment - leading to privacy violations of relying parties. As PKIs act as trust anchors for their subjects, any inadvertent event or malfeasance in PKI setup breaches the trust relationship leading to identity theft. Alternative PKI trust models, like PGP and SPKI, have been proposed but with limited deployment. With several retrofitting amendments to the prevalent X.509 standard, the standard has been serving its core objective of entity authentication but with modern requirements of contextual authentication, it is falling short to accommodate the evolving requirements. With the advent of blockchain as a trust management protocol, the time has come to rethink flexible alternatives to PKI core functionality; keeping in mind the modern-day requirements of contextual authentication-cum-authorization, weighted trust anchors, privacy-preservation, usability, and cost-efficient key management. In this paper, we assess this technology's complementary role in modern-day evolving security requirements. We discuss the feasibility of re-engineering PKIs with the help of blockchains, and identity networks.
Cheng, Jiujun, Hou, Mengnan, Zhou, MengChu, Yuan, Guiyuan, Mao, Qichao.
2022.
An Autonomous Vehicle Group Formation Method based on Risk Assessment Scoring. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1–6.
Forming a secure autonomous vehicle group is extremely challenging since we have to consider threats and vulnerability of autonomous vehicles. Existing studies focus on communications among risk-free autonomous vehicles, which lack metrics to measure passenger security and cargo values. This work proposes a novel autonomous vehicle group formation method. We introduce risk assessment scoring to assess passenger security and cargo values, and propose an autonomous vehicle group formation method based on it. Our vehicle group is composed of a master node, and a number of core and border ones. Finally, the extensive simulation results show that our method is better than a Connectivity Prediction-based Dynamic Clustering model and a Low-InDependently clustering architecture in terms of node survival time, average change count of master nodes, and average risk assessment scoring.
Revathi, K., Tamilselvi, T., Tamilselvi, K., Shanthakumar, P., Samydurai, A..
2022.
Context Aware Fog-Assisted Vital Sign Monitoring System: Design and Implementation. 2022 International Conference on Edge Computing and Applications (ICECAA). :108–112.
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
Suzumura, Toyotaro, Sugiki, Akiyoshi, Takizawa, Hiroyuki, Imakura, Akira, Nakamura, Hiroshi, Taura, Kenjiro, Kudoh, Tomohiro, Hanawa, Toshihiro, Sekiya, Yuji, Kobayashi, Hiroki et al..
2022.
mdx: A Cloud Platform for Supporting Data Science and Cross-Disciplinary Research Collaborations. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1–7.
The growing amount of data and advances in data science have created a need for a new kind of cloud platform that provides users with flexibility, strong security, and the ability to couple with supercomputers and edge devices through high-performance networks. We have built such a nation-wide cloud platform, called "mdx" to meet this need. The mdx platform's virtualization service, jointly operated by 9 national universities and 2 national research institutes in Japan, launched in 2021, and more features are in development. Currently mdx is used by researchers in a wide variety of domains, including materials informatics, geo-spatial information science, life science, astronomical science, economics, social science, and computer science. This paper provides an overview of the mdx platform, details the motivation for its development, reports its current status, and outlines its future plans.
Kumar, Abhinav, Tourani, Reza, Vij, Mona, Srikanteswara, Srikathyayani.
2022.
SCLERA: A Framework for Privacy-Preserving MLaaS at the Pervasive Edge. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :175–180.
The increasing data generation rate and the proliferation of deep learning applications have led to the development of machine learning-as-a-service (MLaaS) platforms by major Cloud providers. The existing MLaaS platforms, however, fall short in protecting the clients’ private data. Recent distributed MLaaS architectures such as federated learning have also shown to be vulnerable against a range of privacy attacks. Such vulnerabilities motivated the development of privacy-preserving MLaaS techniques, which often use complex cryptographic prim-itives. Such approaches, however, demand abundant computing resources, which undermine the low-latency nature of evolving applications such as autonomous driving.To address these challenges, we propose SCLERA–an efficient MLaaS framework that utilizes trusted execution environment for secure execution of clients’ workloads. SCLERA features a set of optimization techniques to reduce the computational complexity of the offloaded services and achieve low-latency inference. We assessed SCLERA’s efficacy using image/video analytic use cases such as scene detection. Our results show that SCLERA achieves up to 23× speed-up when compared to the baseline secure model execution.
Rettlinger, Sebastian, Knaus, Bastian, Wieczorek, Florian, Ivakko, Nikolas, Hanisch, Simon, Nguyen, Giang T., Strufe, Thorsten, Fitzek, Frank H. P..
2022.
MPER - a Motion Profiling Experiment and Research system for human body movement. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :88–90.
State-of-the-art approaches in gait analysis usually rely on one isolated tracking system, generating insufficient data for complex use cases such as sports, rehabilitation, and MedTech. We address the opportunity to comprehensively understand human motion by a novel data model combining several motion-tracking methods. The model aggregates pose estimation by captured videos and EMG and EIT sensor data synchronously to gain insights into muscle activities. Our demonstration with biceps curl and sitting/standing pose generates time-synchronous data and delivers insights into our experiment’s usability, advantages, and challenges.
Desuert, Arthur, Chollet, Stéphanie, Pion, Laurent, Hely, David.
2022.
A Middleware for Secure Integration of Heterogeneous Edge Devices. 2022 IEEE International Conference on Edge Computing and Communications (EDGE). :83–92.
Connected devices are being deployed at a steady rate, providing services like data collection. Pervasive applications rely on those edge devices to seamlessly provide services to users. To connect applications and edge devices, using a middleware has been a popular approach. The research is active on the subject as there are many open challenges. The secure management of the edge devices and the security of the middleware are two of them. As security is a crucial requirement for pervasive environment, we propose a middleware architecture easing the secure use of edge devices for pervasive applications, while supporting the heterogeneity of communication protocols and the dynamism of devices. Because of the heterogeneity in protocols and security features, not all edge devices are equally secure. To allow the pervasive applications to gain control over this heterogeneous security, we propose a model to describe edge devices security. This model is accessible by the applications through our middleware. To validate our work, we developed a demonstrator of our middleware and we tested it in a concrete scenario.
ISSN: 2767-9918
Song, Yangxu, Jiang, Frank, Ali Shah, Syed Wajid, Doss, Robin.
2022.
A New Zero-Trust Aided Smart Key Authentication Scheme in IoV. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :630–636.
With the development of 5G networking technology on the Internet of Vehicle (IoV), there are new opportunities for numerous cyber-attacks, such as in-vehicle attacks like hijacking occurrences and data theft. While numerous attempts have been made to protect against the potential attacks, there are still many unsolved problems such as developing a fine-grained access control system. This is reflected by the granularity of security as well as the related data that are hosted on these platforms. Among the most notable trends is the increased usage of smart devices, IoV, cloud services, emerging technologies aim at accessing, storing and processing data. Most popular authentication protocols rely on knowledge-factor for authentication that is infamously known to be vulnerable to subversions. Recently, the zero-trust framework has drawn huge attention; there is an urgent need to develop further the existing Continuous Authentication (CA) technique to achieve the zero-trustiness framework. In this paper, firstly, we develop the static authentication process and propose a secured protocol to generate the smart key for user to unlock the vehicle. Then, we proposed a novel and secure continuous authentication system for IoVs. We present the proof-of-concept of our CA scheme by building a prototype that leverages the commodity fingerprint sensors, NFC, and smartphone. Our evaluations in real-world settings demonstrate the appropriateness of CA scheme and security analysis of our proposed protocol for digital key suggests its enhanced security against the known attack-vector.
Forti, Stefano.
2022.
Keynote: The fog is rising, in sustainable smart cities. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :469–471.
With their variety of application verticals, smart cities represent a killer scenario for Cloud-IoT computing, e.g. fog computing. Such applications require a management capable of satisfying all their requirements through suitable service placements, and of balancing among QoS-assurance, operational costs, deployment security and, last but not least, energy consumption and carbon emissions. This keynote discusses these aspects over a motivating use case and points to some open challenges.
Halabi, Talal, Abusitta, Adel, Carvalho, Glaucio H.S., Fung, Benjamin C. M..
2022.
Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1–6.
With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.
Moroni, Davide, Pieri, Gabriele, Reggiannini, Marco, Tampucci, Marco.
2022.
A mobile crowdsensing app for improved maritime security and awareness. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :103–105.
The marine and maritime domain is well represented in the Sustainable Development Goals (SDG) envisaged by the United Nations, which aim at conserving and using the oceans, seas and their resources for sustainable development. At the same time, there is a need for improved safety in navigation, especially in coastal areas. Up to date, there exist operational services based on advanced technologies, including remote sensing and in situ monitoring networks which provide aid to the navigation and control over the environment for its preservation. Yet, the possibilities offered by crowdsensing have not yet been fully explored. This paper addresses this issue by presenting an app based on a crowdsensing approach for improved safety and awareness at sea. The app can be integrated into more comprehensive systems and frameworks for environmental monitoring as envisaged in our future work.
Dong, Siyuan, Fan, Zhong.
2022.
Cybersecurity Threats Analysis and Management for Peer-to-Peer Energy Trading. 2022 IEEE 7th International Energy Conference (ENERGYCON). :1–6.
The distributed energy resources (DERs) have significantly stimulated the development of decentralized energy system and changed the way how the energy system works. In recent years, peer-to-peer (P2P) trading has drawn attention as a promising alternative for prosumers to engage with the energy market more actively, particular by using the emerging blockchain technology. Blockchain can securely hold critical information and store data in blocks linking with chain, providing a desired platform for the P2P energy trading. This paper provides a detailed description of blockchain-enabled P2P energy trading, its essential components, and how it can be implemented within the local energy market An analysis of potential threats during blockchain-enabled P2P energy trading is also performed, which subsequently results in a list of operation and privacy requirements suggested to be implemented in the local energy market.
Sicari, Christian, Catalfamo, Alessio, Galletta, Antonino, Villari, Massimo.
2022.
A Distributed Peer to Peer Identity and Access Management for the Osmotic Computing. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :775–781.
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
Wang, Yingsen, Li, Yixiao, Zhao, Juanjuan, Wang, Guibin, Jiao, Weihan, Qiang, Yan, Li, Keqin.
2022.
A Fast and Secured Peer-to-Peer Energy Trading Using Blockchain Consensus. 2022 IEEE Industry Applications Society Annual Meeting (IAS). :1–8.
The architecture and functioning of the electricity markets are rapidly evolving in favour of solutions based on real-time data sharing and decentralised, distributed, renewable energy generation. Peer-to-peer (P2P) energy markets allow two individuals to transact with one another without the need of intermediaries, reducing the load on the power grid during peak hours. However, such a P2P energy market is prone to various cyber attacks. Blockchain technology has been proposed to implement P2P energy trading to support this change. One of the most crucial components of blockchain technology in energy trading is the consensus mechanism. It determines the effectiveness and security of the blockchain for energy trading. However, most of the consensus used in energy trading today are traditional consensus such as Proof-of-Work (PoW) and Practical Byzantine Fault Tolerance (PBFT). These traditional mechanisms cannot be directly adopted in P2P energy trading due to their huge computational power, low throughput, and high latency. Therefore, we propose the Block Alliance Consensus (BAC) mechanism based on Hashgraph. In a massive P2P energy trading network, BAC can keep Hashgraph's throughput while resisting Sybil attacks and supporting the addition and deletion of energy participants. The high efficiency and security of BAC and the blockchain-based energy trading platform are verified through experiments: our improved BAC has an average throughput that is 2.56 times more than regular BFT, 5 times greater than PoW, and 30% greater than the original BAC. The improved BAC has an average latency that is 41% less than BAC and 81% less than original BFT. Our energy trading blockchain (ETB)'s READ performance can achieve the most outstanding throughput of 1192 tps at a workload of 1200 tps, while WRITE can achieve 682 tps at a workload of 800 tps with a success rate of 95% and 0.18 seconds of latency.
ISSN: 2576-702X
Ahmed, Shamim, Biswas, Milon, Hasanuzzaman, Md., Nayeen Mahi, Md. Julkar, Ashraful Islam, Md., Chaki, Sudipto, Gaur, Loveleen.
2022.
A Secured Peer-to-Peer Messaging System Based on Blockchain. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :332–337.
Nowadays, the messaging system is one of the most popular mobile applications, and therefore the authentication between clients is essential. Various kinds of such mobile applications are using encryption-based security protocols, but they are facing many security threat issues. It clearly defines the necessity for a trustful security procedure. Therefore, a blockchain-based messaging system could be an alternative to this problem. That is why, we have developed a secured peer-to-peer messaging system supported by blockchain. This proposed mechanism provides data security among the users. In a blockchain-based framework, all the information can be verified and controlled automatically and all the transactions are recorded that have been created already. In our paper, we have explained how the users can communicate through a blockchain-based messaging system that can maintain a secured network. We explored why blockchain would improve communication security in this post, and we proposed a model architecture for blockchain-based messaging that retains the performance and security of data stored on the blockchain. Our proposed architecture is completely decentralized and enables users to send and receive messages in an acceptable and secure manner.
Skaug, Kirsten Lunde, Smebye, Elise Breivik, Tola, Besmir, Jiang, Yuming.
2022.
Keeping Connected in Internet-Isolated Locations. 2022 Seventh International Conference On Mobile And Secure Services (MobiSecServ). :1–7.
In many scenarios, Internet connectivity may not be available. In such situations, device-to-device (D2D) communication may be utilized to establish a peer-to-peer (P2P) network among mobile users in the vicinity. However, this raises a fundamental question as is how to ensure secure communication in such an infrastructure-less network. In this paper, we present an approach that enables connectivity between mobile devices in the vicinity and supports secure communication between users in Internet-isolated locations. Specifically, the proposed solution uses Wi-Fi Aware for establishing a P2P network and the mTLS (mutual Transport Layer Security) protocol to provide mutually authenticated and encrypted message transfer. Besides, a novel decentralized peer authentication (DPA) scheme compatible with Wi-Fi Aware and TLS is proposed, which enables peers to verify other peers to join the network. A proof-of-concept instant messaging application has been developed to test the proposed DPA scheme and to evaluate the performance of the proposed overall approach. Experimental results, which validate the proposed solution, are presented with findings and limitations discussed.
ISSN: 2640-558X
Arumugam, Rajapandiyan, Subbaiyan, Thangavel.
2022.
A Review of Dynamic Pricing and Peer-to-Peer Energy Trading in Smart Cities with Emphasize on Electric Vehicles. 2022 4th International Conference on Energy, Power and Environment (ICEPE). :1–6.
There is momentous attention from researchers and practitioners all over the world towards one of the most advanced trends in the world, Smart cities. A smart city is an efficient and sustainable city that offers a superior life quality to all human beings through the optimum management of all its resources. Optimum energy management technique within the smart city is a challenging environment that needs a full focus on basic important needs and supports of the smart city. This includes Smart Grid (SG) infrastructure, Distributed Generation (DG) technology, Smart Home Energy Management System (HEMS), Smart Transportation System (STS), and Energy Storage System (ESS). Out of these five taxonomies, there have been some disputes addressed in profitability and security due to the major involvement of electromobility in the smart transportation system. It creates a big impact on the smart city environment. The disputes in profitability can be effectively handled with the use of dynamic pricing techniques and peer-to-peer (P2P) energy trading mechanisms. On the other hand, security disputes can be overwhelmed by the use of blockchain technology. This paper reviews the energy management-related work on smart cities with the consideration of these basic important needs and supports.
Firdaus, Taufiq Maulana, Lubis, Fahdi Saidi, Lubis, Muharman.
2022.
Financial Technology Risk Analysis for Peer to Peer Lending Process: A Case Study of Sharia Aggregator Financial Technology. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1–4.
Financial technology (Fintech) is an amalgamation of financial management using a technology system. Fintech has become a public concern because this service provides many service features to make it easier from the financial side, such as being used in cooperative financial institutions, banking and insurance. This paper will analyze the opportunities and challenges of Fintech sharia in Indonesia. By exploring the existing literature, this article will try to answer that question. This research is carried out using a literature review approach and comparative qualitative method which will determined the results of the SWOT analysis of sharia financial technology in indonesia. It is needed to mitigate risk of funding in a peer to peer method in overcoming the security of funds and data from investors, firstly companies can perform transparency on the clarity of investor funds. This is done as one of the facilities provided to investors in the Fintech application. In the future, it is hoped that in facing competition, sharia-based fintech companies must be able to provide targeted services through the socialization of sharia fintech to the public, both online and offline. Investors are expected to be more careful before investing in choosing Fintech Peer to Peer (P2P) Lending services by checking the list of Fintech lending and lending companies registered and found by the Financial Services Authority (OJK).
ISSN: 2770-159X
Sarapan, Waranyu, Boonrakchat, Nonthakorn, Paudel, Ashok, Booraksa, Terapong, Boonraksa, Promphak, Marungsri, Boonruang.
2022.
Optimal Peer-to-Peer Energy Trading by Applying Blockchain to Islanded Microgrid Considering V2G. 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :1–4.
Energy trading in small groups or microgrids is interesting to study. The energy market may overgrow in the future, so accessing the energy market by small prosumers may not be difficult anymore. This paper has modeled a decentralized P2P energy trading and exchange system in a microgrid group. The Islanded microgrid system is simulated to create a small energy producer and consumer trading situation. The simulation results show the increasing energy transactions and profit when including V2G as an energy storage device. In addition, blockchain is used for system security because a peer-to-peer marketplace has no intermediary control.
Choudhry, Mahipal Singh, Jetli, Vaibhav, Mathur, Siddhant, Saini, Yash.
2022.
A Review on Behavioural Biometric Authentication. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–6.
With the advent of technology and owing to mankind’s reliance on technology, it is of utmost importance to safeguard people’s data and their identity. Biometrics have for long played an important role in providing that layer of security ranging from small scale uses such as house locks to enterprises using them for confidentiality purposes. In this paper we will provide an insight into behavioral biometrics that rely on identifying and measuring human characteristics or behavior. We review different types of behavioral parameters such as keystroke dynamics, gait, footstep pressure signals and more.
Doshi, Om B., Bendale, Hitesh N., Chavan, Aarti M., More, Shraddha S..
2022.
A Smart Door Lock Security System using Internet of Things. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1457–1463.
Security is a key concern across the world, and it has been a common thread for all critical sectors. Nowadays, it may be stated that security is a backbone that is absolutely necessary for personal safety. The most important requirements of security systems for individuals are protection against theft and trespassing. CCTV cameras are often employed for security purposes. The biggest disadvantage of CCTV cameras is their high cost and the need for a trustworthy individual to monitor them. As a result, a solution that is both easy and cost-effective, as well as secure has been devised. The smart door lock is built on Raspberry Pi technology, and it works by capturing a picture through the Pi Camera module, detecting a visitor's face, and then allowing them to enter. Local binary pattern approach is used for Face recognition. Remote picture viewing, notification, on mobile device are all possible with an IOT based application. The proposed system may be installed at front doors, lockers, offices, and other locations where security is required. The proposed system has an accuracy of 89%, with an average processing time is 20 seconds for the overall process.