Talukdar, Jonti, Chaudhuri, Arjun, Chakrabarty, Krishnendu.
2022.
TaintLock: Preventing IP Theft through Lightweight Dynamic Scan Encryption using Taint Bits. 2022 IEEE European Test Symposium (ETS). :1–6.
We propose TaintLock, a lightweight dynamic scan data authentication and encryption scheme that performs per-pattern authentication and encryption using taint and signature bits embedded within the test pattern. To prevent IP theft, we pair TaintLock with truly random logic locking (TRLL) to ensure resilience against both Oracle-guided and Oracle-free attacks, including scan deobfuscation attacks. TaintLock uses a substitution-permutation (SP) network to cryptographically authenticate each test pattern using embedded taint and signature bits. It further uses cryptographically generated keys to encrypt scan data for unauthenticated users dynamically. We show that it offers a low overhead, non-intrusive secure scan solution without impacting test coverage or test time while preventing IP theft.
ISSN: 1558-1780
Halisdemir, Maj. Emre, Karacan, Hacer, Pihelgas, Mauno, Lepik, Toomas, Cho, Sungbaek.
2022.
Data Quality Problem in AI-Based Network Intrusion Detection Systems Studies and a Solution Proposal. 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:367–383.
Network Intrusion Detection Systems (IDSs) have been used to increase the level of network security for many years. The main purpose of such systems is to detect and block malicious activity in the network traffic. Researchers have been improving the performance of IDS technology for decades by applying various machine-learning techniques. From the perspective of academia, obtaining a quality dataset (i.e. a sufficient amount of captured network packets that contain both malicious and normal traffic) to support machine learning approaches has always been a challenge. There are many datasets publicly available for research purposes, including NSL-KDD, KDDCUP 99, CICIDS 2017 and UNSWNB15. However, these datasets are becoming obsolete over time and may no longer be adequate or valid to model and validate IDSs against state-of-the-art attack techniques. As attack techniques are continuously evolving, datasets used to develop and test IDSs also need to be kept up to date. Proven performance of an IDS tested on old attack patterns does not necessarily mean it will perform well against new patterns. Moreover, existing datasets may lack certain data fields or attributes necessary to analyse some of the new attack techniques. In this paper, we argue that academia needs up-to-date high-quality datasets. We compare publicly available datasets and suggest a way to provide up-to-date high-quality datasets for researchers and the security industry. The proposed solution is to utilize the network traffic captured from the Locked Shields exercise, one of the world’s largest live-fire international cyber defence exercises held annually by the NATO CCDCOE. During this three-day exercise, red team members consisting of dozens of white hackers selected by the governments of over 20 participating countries attempt to infiltrate the networks of over 20 blue teams, who are tasked to defend a fictional country called Berylia. After the exercise, network packets captured from each blue team’s network are handed over to each team. However, the countries are not willing to disclose the packet capture (PCAP) files to the public since these files contain specific information that could reveal how a particular nation might react to certain types of cyberattacks. To overcome this problem, we propose to create a dedicated virtual team, capture all the traffic from this team’s network, and disclose it to the public so that academia can use it for unclassified research and studies. In this way, the organizers of Locked Shields can effectively contribute to the advancement of future artificial intelligence (AI) enabled security solutions by providing annual datasets of up-to-date attack patterns.
ISSN: 2325-5374
Triyanto, Aripin, Sunardi, Ariyawan, Nurtiyanto, Woro Agus, Koiru Ihksanudin, Moch, Mardiansyah.
2022.
Security System In The Safe With The Personal Identification Method Of Number Identification With Modulo Arthmatic Patterns. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1–6.
The burglary of a safe in the city of Jombang, East Java, lost valuables belonging to the Cemerlang Multipurpose Trading Cooperative. Therefore, a security system tool was created in the safe that serves as a place to store valuables and important assets. Change the security system using the security system with a private unique method with modulo arithmetic pattern. The security system of the safe is designed in layers which are attached with the RFID tag by registering and then verifying it on the card. Entering the password on the card cannot be read or is not performed, then the system will refuse to open it. arduino mega type 256 components, RFID tag is attached to the RFID reader, only one validated passive tag can open access to the security system, namely number B9 20 E3 0F. Meanwhile, of the ten passwords entered, only three match the modulo arithmetic format and can open the security system, namely password numbers 22540, 51324 and 91032. The circuit system on the transistor in the solenoid driver circuit works after the safety system opens. The servo motor can rotate according to the input of the open 900 servo angle rotation program.
ISSN: 2767-7826
Gong, Yi, Chen, Minjie, Song, Lihua, Guo, Yanfei.
2022.
Study on the classification model of lock mechanism in operating system. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA). :857–861.
Lock design is an important mechanism for scheduling management and security protection in operating systems. However, there is no effective way to identify the differences and connections among lock models, and users need to spend considerable time to understand different lock architectures. In this paper, we propose a classification scheme that abstracts lock design into three types of models: basic spinlock, semaphore amount extension, lock chain structure, and verify the effectiveness of these three types of lock models in the context of current mainstream applications. We also investigate the specific details of applying this classification method, which can be used as a reference for developers to design lock models, thus shorten the software development cycle.
Song, Sanquan, Tell, Stephen G., Zimmer, Brian, Kudva, Sudhir S., Nedovic, Nikola, Gray, C. Thomas.
2022.
An FLL-Based Clock Glitch Detector for Security Circuits in a 5nm FINFET Process. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). :146–147.
The rapid complexity growth of electronic systems nowadays increases their vulnerability to hacking, such as fault injection, including insertion of glitches into the system clock to corrupt internal state through timing errors. As a countermeasure, a frequency locked loop (FLL) based clock glitch detector is proposed in this paper. Regulated from an external supply voltage, this FLL locks at 16-36X of the system clock, creating four phases to measure the system clock by oversampling at 64-144X. The samples are then used to sense the frequency and close the frequency locked loop, as well as to detect glitches through pattern matching. Implemented in a 5nm FINFET process, it can detect the glitches or pulse width variations down to 3.125% of the input 40MHz clock cycle with the supply varying from 0.5 to 1.0V.
ISSN: 2158-9682
Zhu, Feng, Shen, Peisong, Chen, Kaini, Ma, Yucheng, Chen, Chi.
2022.
A Secure and Practical Sample-then-lock Scheme for Iris Recognition. 2022 26th International Conference on Pattern Recognition (ICPR). :833–839.
Sample-then-lock construction is a reusable fuzzy extractor for low-entropy sources. When applied on iris recognition scenarios, many subsets of an iris-code are used to lock the cryptographic key. The security of this construction relies on the entropy of subsets of iris codes. Simhadri et al. reported a security level of 32 bits on iris sources. In this paper, we propose two kinds of attacks to crack existing sample-then-lock schemes. Exploiting the low-entropy subsets, our attacks can break the locked key and the enrollment iris-code respectively in less than 220 brute force attempts. To protect from these proposed attacks, we design an improved sample-then-lock scheme. More precisely, our scheme employs stability and discriminability to select high-entropy subsets to lock the genuine secret, and conceals genuine locker by a large amount of chaff lockers. Our experiment verifies that existing schemes are vulnerable to the proposed attacks with a security level of less than 20 bits, while our scheme can resist these attacks with a security level of more than 100 bits when number of genuine subsets is 106.
ISSN: 2831-7475
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.
2022.
DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
Khoury, David, Balian, Patrick, Kfoury, Elie.
2022.
Implementation of Blockchain Domain Control Verification (B-DCV). 2022 45th International Conference on Telecommunications and Signal Processing (TSP). :17–22.
Security in the communication systems rely mainly on a trusted Public Key Infrastructure (PKI) and Certificate Authorities (CAs). Besides the lack of automation, the complexity and the cost of assigning a signed certificate to a device, several allegations against CAs have been discovered, which has created trust issues in adopting this standard model for secure systems. The automation of the servers certificate assignment was achieved by the Automated Certificate Management Environment (ACME) method, but without confirming the trust of assigned certificate. This paper presents a complete tested and implemented solution to solve the trust of the Certificates provided to the servers by using the blockchain platform for certificate validation. The Blockchain network provides an immutable data store, holding the public keys of all domain names, while resolving the trust concerns by applying an automated Blockchain-based Domain Control Validation (B-DCV) for the server and client server verification. The evaluation was performed on the Ethereum Rinkeby testnet adopting the Proof of Authority (PoA) consensus algorithm which is an improved version of Proof of Stake (Po \$S\$) applied on Ethereum 2.0 providing superior performance compared to Ethereum 1.0.
Chakraborty, Joymallya, Majumder, Suvodeep, Tu, Huy.
2022.
Fair-SSL: Building fair ML Software with less data. 2022 IEEE/ACM International Workshop on Equitable Data & Technology (FairWare). :1–8.
Ethical bias in machine learning models has become a matter of concern in the software engineering community. Most of the prior software engineering works concentrated on finding ethical bias in models rather than fixing it. After finding bias, the next step is mitigation. Prior researchers mainly tried to use supervised approaches to achieve fairness. However, in the real world, getting data with trustworthy ground truth is challenging and also ground truth can contain human bias. Semi-supervised learning is a technique where, incrementally, labeled data is used to generate pseudo-labels for the rest of data (and then all that data is used for model training). In this work, we apply four popular semi-supervised techniques as pseudo-labelers to create fair classification models. Our framework, Fair-SSL, takes a very small amount (10%) of labeled data as input and generates pseudo-labels for the unlabeled data. We then synthetically generate new data points to balance the training data based on class and protected attribute as proposed by Chakraborty et al. in FSE 2021. Finally, classification model is trained on the balanced pseudo-labeled data and validated on test data. After experimenting on ten datasets and three learners, we find that Fair-SSL achieves similar performance as three state-of-the-art bias mitigation algorithms. That said, the clear advantage of Fair-SSL is that it requires only 10% of the labeled training data. To the best of our knowledge, this is the first SE work where semi-supervised techniques are used to fight against ethical bias in SE ML models. To facilitate open science and replication, all our source code and datasets are publicly available at https://github.com/joymallyac/FairSSL. CCS CONCEPTS • Software and its engineering → Software creation and management; • Computing methodologies → Machine learning. ACM Reference Format: Joymallya Chakraborty, Suvodeep Majumder, and Huy Tu. 2022. Fair-SSL: Building fair ML Software with less data. In International Workshop on Equitable Data and Technology (FairWare ‘22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3524491.3527305