Visible to the public Biblio

Filters: Keyword is incentive  [Clear All Filters]
2022-09-09
Pranesh, S.A., Kannan V., Vignesh, Viswanathan, N., Vijayalakshmi, M..  2020.  Design and Analysis of Incentive Mechanism for Ethereum-based Supply Chain Management Systems. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Blockchain is becoming more popular because of its decentralized, secured, and transparent nature. Supply chain and its management is indispensable to improve customer services, reduce operating costs and improve financial position of a firm. Integration of blockchain and supply chain is substantial, but it alone is not enough for the sustainability of supply chain systems. The proposed mechanism speaks about the method of rewarding the supply chain parties with incentives so as to improve the security and make the integration of supply chain with blockchain sustainable. The proposed incentive mechanism employs the co-operative approach of game theory where all the supply chain parties show a cooperative behavior of following the blockchain-based supply chain protocols and also this mechanism makes a fair attempt in rewarding the supply chain parties with incentives.
2021-07-27
Sharma, Prince, Shukla, Shailendra, Vasudeva, Amol.  2020.  Trust-based Incentive for Mobile Offloaders in Opportunistic Networks. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :872—877.
Mobile data offloading using opportunistic network has recently gained its significance to increase mobile data needs. Such offloaders need to be properly incentivized to encourage more and more users to act as helpers in such networks. The extent of help offered by mobile data offloading alternatives using appropriate incentive mechanisms is significant in such scenarios. The limitation of existing incentive mechanisms is that they are partial in implementation while most of them use third party intervention based derivation. However, none of the papers considers trust as an essential factor for incentive distribution. Although few works contribute to the trust analysis, but the implementation is limited to offloading determination only while the incentive is independent of trust. We try to investigate if trust could be related to the Nash equilibrium based incentive evaluation. Our analysis results show that trust-based incentive distribution encourages more than 50% offloaders to act positively and contribute successfully towards efficient mobile data offloading. We compare the performance of our algorithm with literature based salary-bonus scheme implementation and get optimum incentive beyond 20% dependence over trust-based output.
2020-07-03
Bao, Xianglin, Su, Cheng, Xiong, Yan, Huang, Wenchao, Hu, Yifei.  2019.  FLChain: A Blockchain for Auditable Federated Learning with Trust and Incentive. 2019 5th International Conference on Big Data Computing and Communications (BIGCOM). :151—159.

Federated learning (shorted as FL) recently proposed by Google is a privacy-preserving method to integrate distributed data trainers. FL is extremely useful due to its ensuring privacy, lower latency, less power consumption and smarter models, but it could fail if multiple trainers abort training or send malformed messages to its partners. Such misbehavior are not auditable and parameter server may compute incorrectly due to single point failure. Furthermore, FL has no incentive to attract sufficient distributed training data and computation power. In this paper, we propose FLChain to build a decentralized, public auditable and healthy FL ecosystem with trust and incentive. FLChain replace traditional FL parameter server whose computation result must be consensual on-chain. Our work is not trivial when it is vital and hard to provide enough incentive and deterrence to distributed trainers. We achieve model commercialization by providing a healthy marketplace for collaborative-training models. Honest trainer can gain fairly partitioned profit from well-trained model according to its contribution and the malicious can be timely detected and heavily punished. To reduce the time cost of misbehavior detecting and model query, we design DDCBF for accelerating the query of blockchain-documented information. Finally, we implement a prototype of our work and measure the cost of various operations.