Biblio
Social media has beneficial and detrimental impacts on social life. The vast distribution of false information on social media has become a worldwide threat. As a result, the Fake News Detection System in Social Networks has risen in popularity and is now considered an emerging research area. A centralized training technique makes it difficult to build a generalized model by adapting numerous data sources. In this study, we develop a decentralized Deep Learning model using Federated Learning (FL) for fake news detection. We utilize an ISOT fake news dataset gathered from "Reuters.com" (N = 44,898) to train the deep learning model. The performance of decentralized and centralized models is then assessed using accuracy, precision, recall, and F1-score measures. In addition, performance was measured by varying the number of FL clients. We identify the high accuracy of our proposed decentralized FL technique (accuracy, 99.6%) utilizing fewer communication rounds than in previous studies, even without employing pre-trained word embedding. The highest effects are obtained when we compare our model to three earlier research. Instead of a centralized method for false news detection, the FL technique may be used more efficiently. The use of Blockchain-like technologies can improve the integrity and validity of news sources.
ISSN: 2577-1647
False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.