Visible to the public Biblio

Filters: Keyword is cryptomining  [Clear All Filters]
2022-07-12
Tekiner, Ege, Acar, Abbas, Uluagac, A. Selcuk, Kirda, Engin, Selcuk, Ali Aydin.  2021.  In-Browser Cryptomining for Good: An Untold Story. 2021 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). :20—29.
In-browser cryptomining uses the computational power of a website's visitors to mine cryptocurrency, i.e., to create new coins. With the rise of ready-to-use mining scripts distributed by service providers (e.g., Coinhive), it has become trivial to turn a website into a cryptominer by copying and pasting the mining script. Both legitimate webpage owners who want to raise an extra revenue under users' explicit consent and malicious actors who wish to exploit the computational power of the users' computers without their consent have started to utilize this emerging paradigm of cryptocurrency operations. In-browser cryptomining, though mostly abused by malicious actors in practice, is indeed a promising funding model that can be utilized by website owners, publishers, or non-profit organizations for legitimate business purposes, such as to collect revenue or donations for humanitarian projects, inter alia. However, our analysis in this paper shows that in practice, regardless of their being legitimate or not, all in-browser mining scripts are treated the same as malicious cryptomining samples (aka cryptojacking) and blacklisted by browser extensions or antivirus programs. Indeed, there is a need for a better understanding of the in-browser cryptomining ecosystem. Hence, in this paper, we present an in-depth empirical analysis of in-browser cryptomining processes, focusing on the samples explicitly asking for user consent, which we call permissioned cryptomining. To the best of our knowledge, this is the first study focusing on the permissioned cryptomining samples. For this, we created a dataset of 6269 unique web sites containing cryptomining scripts in their source codes to characterize the in-browser cryptomining ecosystem by differentiating permissioned and permissionless cryptomining samples. We believe that (1) this paper is the first attempt showing that permissioned in-browser cryptomining could be a legitimate and viable monetization tool if implemented responsibly and without interrupting the user, and (2) this paper will catalyze the widespread adoption of legitimate crvptominina with user consent and awareness.
Tekiner, Ege, Acar, Abbas, Uluagac, A. Selcuk, Kirda, Engin, Selcuk, Ali Aydin.  2021.  SoK: Cryptojacking Malware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :120—139.
Emerging blockchain and cryptocurrency-based technologies are redefining the way we conduct business in cyberspace. Today, a myriad of blockchain and cryp-tocurrency systems, applications, and technologies are widely available to companies, end-users, and even malicious actors who want to exploit the computational resources of regular users through cryptojacking malware. Especially with ready-to-use mining scripts easily provided by service providers (e.g., Coinhive) and untraceable cryptocurrencies (e.g., Monero), cryptojacking malware has become an indispensable tool for attackers. Indeed, the banking industry, major commercial websites, government and military servers (e.g., US Dept. of Defense), online video sharing platforms (e.g., Youtube), gaming platforms (e.g., Nintendo), critical infrastructure resources (e.g., routers), and even recently widely popular remote video conferencing/meeting programs (e.g., Zoom during the Covid-19 pandemic) have all been the victims of powerful cryptojacking malware campaigns. Nonetheless, existing detection methods such as browser extensions that protect users with blacklist methods or antivirus programs with different analysis methods can only provide a partial panacea to this emerging crypto-jacking issue as the attackers can easily bypass them by using obfuscation techniques or changing their domains or scripts frequently. Therefore, many studies in the literature proposed cryptojacking malware detection methods using various dynamic/behavioral features. However, the literature lacks a systemic study with a deep understanding of the emerging cryptojacking malware and a comprehensive review of studies in the literature. To fill this gap in the literature, in this SoK paper, we present a systematic overview of cryptojacking malware based on the information obtained from the combination of academic research papers, two large cryptojacking datasets of samples, and 45 major attack instances. Finally, we also present lessons learned and new research directions to help the research community in this emerging area.
2021-02-10
Romano, A., Zheng, Y., Wang, W..  2020.  MinerRay: Semantics-Aware Analysis for Ever-Evolving Cryptojacking Detection. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1129—1140.
Recent advances in web technology have made in-browser crypto-mining a viable funding model. However, these services have been abused to launch large-scale cryptojacking attacks to secretly mine cryptocurrency in browsers. To detect them, various signature-based or runtime feature-based methods have been proposed. However, they can be imprecise or easily circumvented. To this end, we propose MinerRay, a generic scheme to detect malicious in-browser cryptominers. Instead of leveraging unreliable external patterns, MinerRay infers the essence of cryptomining behaviors that differentiate mining from common browser activities in both WebAssembly and JavaScript contexts. Additionally, to detect stealthy mining activities without user consents, MinerRay checks if the miner can only be instantiated from user actions. MinerRay was evaluated on over 1 million websites. It detected cryptominers on 901 websites, where 885 secretly start mining without user consent. Besides, we compared MinerRay with five state-of-the-art signature-based or behavior-based cryptominer detectors (MineSweeper, CMTracker, Outguard, No Coin, and minerBlock). We observed that emerging miners with new signatures or new services were detected by MinerRay but missed by others. The results show that our proposed technique is effective and robust in detecting evolving cryptominers, yielding more true positives, and fewer errors.
Varlioglu, S., Gonen, B., Ozer, M., Bastug, M..  2020.  Is Cryptojacking Dead After Coinhive Shutdown? 2020 3rd International Conference on Information and Computer Technologies (ICICT). :385—389.
Cryptojacking is the exploitation of victims' computer resources to mine for cryptocurrency using malicious scripts. It had become popular after 2017 when attackers started to exploit legal mining scripts, especially Coinhive scripts. Coinhive was actually a legal mining service that provided scripts and servers for in-browser mining activities. Nevertheless, over 10 million web users had been victims every month before the Coinhive shutdown that happened in Mar 2019. This paper explores the new era of the cryptojacking world after Coinhive discontinued its service. We aimed to see whether and how attackers continue cryptojacking, generate new malicious scripts, and developed new methods. We used a capable cryptojacking detector named CMTracker that proposed by Hong et al. in 2018. We automatically and manually examined 2770 websites that had been detected by CMTracker before the Coinhive shutdown. The results revealed that 99% of sites no longer continue cryptojacking. 1% of websites still run 8 unique mining scripts. By tracking these mining scripts, we detected 632 unique cryptojacking websites. Moreover, open-source investigations (OSINT) demonstrated that attackers still use the same methods. Therefore, we listed the typical patterns of cryptojacking. We concluded that cryptojacking is not dead after the Coinhive shutdown. It is still alive, but not as attractive as it used to be.
2021-01-22
Mani, G., Pasumarti, V., Bhargava, B., Vora, F. T., MacDonald, J., King, J., Kobes, J..  2020.  DeCrypto Pro: Deep Learning Based Cryptomining Malware Detection Using Performance Counters. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :109—118.
Autonomy in cybersystems depends on their ability to be self-aware by understanding the intent of services and applications that are running on those systems. In case of mission-critical cybersystems that are deployed in dynamic and unpredictable environments, the newly integrated unknown applications or services can either be benign and essential for the mission or they can be cyberattacks. In some cases, these cyberattacks are evasive Advanced Persistent Threats (APTs) where the attackers remain undetected for reconnaissance in order to ascertain system features for an attack e.g. Trojan Laziok. In other cases, the attackers can use the system only for computing e.g. cryptomining malware. APTs such as cryptomining malware neither disrupt normal system functionalities nor trigger any warning signs because they simply perform bitwise and cryptographic operations as any other benign compression or encoding application. Thus, it is difficult for defense mechanisms such as antivirus applications to detect these attacks. In this paper, we propose an Operating Context profiling system based on deep neural networks-Long Short-Term Memory (LSTM) networks-using Windows Performance Counters data for detecting these evasive cryptomining applications. In addition, we propose Deep Cryptomining Profiler (DeCrypto Pro), a detection system with a novel model selection framework containing a utility function that can select a classification model for behavior profiling from both the light-weight machine learning models (Random Forest and k-Nearest Neighbors) and a deep learning model (LSTM), depending on available computing resources. Given data from performance counters, we show that individual models perform with high accuracy and can be trained with limited training data. We also show that the DeCrypto Profiler framework reduces the use of computational resources and accurately detects cryptomining applications by selecting an appropriate model, given the constraints such as data sample size and system configuration.
2020-07-10
Yulianto, Arief Dwi, Sukarno, Parman, Warrdana, Aulia Arif, Makky, Muhammad Al.  2019.  Mitigation of Cryptojacking Attacks Using Taint Analysis. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). :234—238.

Cryptojacking (also called malicious cryptocurrency mining or cryptomining) is a new threat model using CPU resources covertly “mining” a cryptocurrency in the browser. The impact is a surge in CPU Usage and slows the system performance. In this research, in-browsercryptojacking mitigation has been built as an extension in Google Chrome using Taint analysis method. The method used in this research is attack modeling with abuse case using the Man-In-The-Middle (MITM) attack as a testing for mitigation. The proposed model is designed so that users will be notified if a cryptojacking attack occurs. Hence, the user is able to check the script characteristics that run on the website background. The results of this research show that the taint analysis is a promising method to mitigate cryptojacking attacks. From 100 random sample websites, the taint analysis method can detect 19 websites that are infcted by cryptojacking.