Biblio
In this paper, we address the design an implementation of low power embedded systems for real-time tracking of humans and vehicles. Such systems are important in applications such as activity monitoring and border security. We motivate the utility of mobile devices in prototyping the targeted class of tracking systems, and demonstrate a dataflow-based and cross-platform design methodology that enables efficient experimentation with key aspects of our tracking system design, including real-time operation, experimentation with advanced sensors, and streamlined management of design versions on host and mobile platforms. Our experiments demonstrate the utility of our mobile-device-targeted design methodology in validating tracking algorithm operation; evaluating real-time performance, energy efficiency, and accuracy of tracking system execution; and quantifying trade-offs involving use of advanced sensors, which offer improved sensing accuracy at the expense of increased cost and weight. Additionally, through application of a novel, cross-platform, model-based design approach, our design requires no change in source code when migrating from an initial, host-computer-based functional reference to a fully-functional implementation on the targeted mobile device.
In the last decade, the request for Internet access in heterogeneous environments keeps on growing, principally in mobile platforms such as buses, airplanes and trains. Consequently, several extensions and schemes have been introduced to achieve seamless handoff of mobile networks from one subnet to another. Even with these enhancements, the problem of maintaining the security concerns and availability has not been resolved yet, especially, the absence of authentication mechanism between network entities in order to avoid vulnerability from attacks. To eliminate the threats on the interface between the mobile access gateway (MAG) and the mobile router (MR) in improving fast PMIPv6-based network mobility (IFP-NEMO) protocol, we propose a lightweight mutual authentication mechanism in improving fast PMIPv6-based network mobility scheme (LMAIFPNEMO). This scheme uses authentication, authorization and accounting (AAA) servers to enhance the security of the protocol IFP-NEMO which allows the integration of improved fast proxy mobile IPv6 (PMIPv6) in network mobility (NEMO). We use only symmetric cryptographic, generated nonces and hash operation primitives to ensure a secure authentication procedure. Then, we analyze the security aspect of the proposed scheme and evaluate it using the automated validation of internet security protocols and applications (AVISPA) software which has proved that authentication goals are achieved.