Visible to the public Biblio

Filters: Keyword is security defense  [Clear All Filters]
2023-01-20
Liu, Dong, Zhu, Yingwei, Du, Haoliang, Ruan, Lixiang.  2022.  Multi-level security defense method of smart substation based on data aggregation and convolution neural network. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1987–1991.
Aiming at the prevention of information security risk in protection and control of smart substation, a multi-level security defense method of substation based on data aggregation and convolution neural network (CNN) is proposed. Firstly, the intelligent electronic device(IED) uses "digital certificate + digital signature" for the first level of identity authentication, and uses UKey identification code for the second level of physical identity authentication; Secondly, the device group of the monitoring layer judges whether the data report is tampered during transmission according to the registration stage and its own ID information, and the device group aggregates the data using the credential information; Finally, the convolution decomposition technology and depth separable technology are combined, and the time factor is introduced to control the degree of data fusion and the number of input channels of the network, so that the network model can learn the original data and fused data at the same time. Simulation results show that the proposed method can effectively save communication overhead, ensure the reliable transmission of messages under normal and abnormal operation, and effectively improve the security defense ability of smart substation.
2021-05-05
Zheng, Tian, Hong, Qiao, Xi, Li, Yizheng, Sun, Jie, Deng.  2020.  A Security Defense Model for SCADA System Based on Game Theory. 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :253—258.

With the increase of the information level of SCADA system in recent years, the attacks against SCADA system are also increasing. Therefore, more and more scholars are beginning to study the safety of SCADA systems. Game theory is a balanced decision involving the main body of all parties. In recent years, domestic and foreign scholars have applied game theory to SCADA systems to achieve active defense. However, their research often focuses on the entire SCADA system, and the game theory is solved for the entire SCADA system, which is not flexible enough, and the calculation cost is also high. In this paper, a dynamic local game model (DLGM) for power SCADA system is proposed. This model first obtains normal data to form a whitelist, then dynamically detects each attack of the attacker's SCADA system, and through white list to determine the node location of the SCADA system attacked by the attacker, then obtains the smallest system attacked by SCADA system, and finally performs a local dynamic game algorithm to find the best defense path. Experiments show that DLGM model can find the best defense path more effectively than other game strategies.

2020-07-20
Nausheen, Farha, Begum, Sayyada Hajera.  2018.  Healthcare IoT: Benefits, vulnerabilities and solutions. 2018 2nd International Conference on Inventive Systems and Control (ICISC). :517–522.
With all the exciting benefits of IoT in healthcare - from mobile applications to wearable and implantable health gadgets-it becomes prominent to ensure that patients, their medical data and the interactions to and from their medical devices are safe and secure. The security and privacy is being breached when the mobile applications are mishandled or tampered by the hackers by performing reverse engineering on the application leading to catastrophic consequences. To combat against these vulnerabilities, there is need to create an awareness of the potential risks of these devices and effective strategies are needed to be implemented to achieve a level of security defense. In this paper, the benefits of healthcare IoT system and the possible vulnerabilities that may result are presented. Also, we propose to develop solutions against these vulnerabilities by protecting mobile applications using obfuscation and return oriented programming techniques. These techniques convert an application into a form which makes difficult for an adversary to interpret or alter the code for illegitimate purpose. The mobile applications use keys to control communication with the implantable medical devices, which need to be protected as they are the critical component for securing communications. Therefore, we also propose access control schemes using white box encryption to make the keys undiscoverable to hackers.