Visible to the public Biblio

Filters: Keyword is share data  [Clear All Filters]
2023-01-13
Deng, Chao, He, Mingxing, Wen, Xinyu, Luo, Qian.  2022.  Support Efficient User Revocation and Identity Privacy in Integrity Auditing of Shared Data. 2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :221—229.
The cloud provides storage for users to share their files in the cloud. Nowadays some shared data auditing schemes are proposed for protecting data integrity. However, preserving the identity privacy of group users and secure user revocation usually result in high computational overhead. Then a shared data auditing scheme supporting identity privacy preserving is proposed that enables users to be effectively revoked. To preserve identity privacy during the audit process, we develop an efficient authenticator generation mechanism that enables public auditing. Our solution supports efficient user revocation, where the authenticator of the revoked user does not need to be regenerated and integrity checking can be performed appropriately. At the same time, the group manager maintains two tables to ensure user traceability. When the user updates data, two tables are modified and updated by the group manager promptly. It shows that our scheme is secure by security analysis. Moreover, concrete experiments prove the performance of the system.
2020-07-24
Li, Chunhua, He, Jinbiao, Lei, Cheng, Guo, Chan, Zhou, Ke.  2018.  Achieving Privacy-Preserving CP-ABE Access Control with Multi-Cloud. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :801—808.
Cloud storage service makes it very convenient for people to access and share data. At the same time, the confidentiality and privacy of user data is also facing great challenges. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme is widely considered to be the most suitable security access control technology for cloud storage environment. Aiming at the problem of privacy leakage caused by single-cloud CP-ABE which is commonly adopted in the current schemes, this paper proposes a privacy-preserving CP-ABE access control scheme using multi-cloud architecture. By improving the traditional CP-ABE algorithm and introducing a proxy to cut the user's private key, it can ensure that only a part of the user attribute set can be obtained by a single cloud, which effectively protects the privacy of user attributes. Meanwhile, the intermediate logical structure of the access policy tree is stored in proxy, and only the leaf node information is stored in the ciphertext, which effectively protects the privacy of the access policy. Security analysis shows that our scheme is effective against replay and man-in-the-middle attacks, as well as user collusion attack. Experimental results also demonstrates that the multi-cloud CP-ABE does not significantly increase the overhead of storage and encryption compared to the single cloud scheme, but the access control overhead decreases as the number of clouds increases. When the access policy is expressed with a AND gate structure, the decryption overhead is obviously less than that of a single cloud environment.