Biblio
Filters: Keyword is IP core protection [Clear All Filters]
IPlock: An Effective Hybrid Encryption for Neuromorphic Systems IP Core Protection. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:612—616.
.
2020. Recent advances in resistive synaptic devices have enabled the emergence of brain-inspired smart chips. These chips can execute complex cognitive tasks in digital signal processing precisely and efficiently using an efficient neuromorphic system. The neuromorphic synapses used in such chips, however, are different from the traditional integrated circuit architectures, thereby weakening their resistance to malicious transformation and intellectual property (IP) counterfeiting. Accordingly, in this paper, we propose an effective hybrid encryption methodology for IP core protection in neuromorphic computing systems, in-corporating elliptic curve cryptography and SM4 simultaneously. Experimental results confirm that the proposed method can implement real-time encryption of any number of crossbar arrays in neuromorphic systems accurately, while reducing the time overhead by 14.40%-26.08%.
Hardware Steganography for IP Core Protection of Fault Secured DSP Cores. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1–6.
.
2019. Security of transient fault secured IP cores against piracy, false claim of ownership can be achieved during high level synthesis, especially when handling DSP or multimedia cores. Though watermarking that involves implanting a vendor defined signature onto the design can be useful, however research has shown its limitations such as less designer control, high overhead due to extreme dependency on signature size, combination and encoding rule. This paper proposes an alternative paradigm called `hardware steganography' where hidden additional designer's constraints are implanted in a fault secured IP core using entropy thresholding. In proposed hardware steganography, concealed information in the form of additional edges having a specific entropy value is embedded in the colored interval graph (CIG). This is a signature free approach and ensures high designer control (more robustness and stronger proof of authorship) as well as lower overhead than watermarking schemes used for DSP based IP cores.
Reusable intellectual property core protection for both buyer and seller. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—3.
.
2018. This paper presents a methodology for IP core protection of CE devices from both buyer's and seller's perspective. In the presented methodology, buyer fingerprint is embedded along seller watermark during architectural synthesis phase of IP core design. The buyer fingerprint is inserted during scheduling phase while seller watermark is implanted during register allocation phase of architectural synthesis process. The presented approach provides a robust mechanisms of IP core protection for both buyer and seller at zero area overhead, 1.1 % latency overhead and 0.95 % design cost overhead compared to a similar approach (that provides only protection to IP seller).