Biblio
The future fifth-generation (5G) mobile communications system has already become a focus around the world. A large number of late-model services and applications including high definition visual communication, internet of vehicles, multimedia interaction, mobile industry automation, and etc, will be added to 5G network platform in the future. Different application services have different security requirements. However, the current user authentication for services and applications: Extensible Authentication Protocol (EAP) suggested by the 3GPP committee, is only a unitary authentication model, which is unable to meet the diversified security requirements of differentiated services. In this paper, we present a new diversified identity management as well as a flexible and composable three-factor authentication mechanism for different applications in 5G multi-service systems. The proposed scheme can provide four identity authentication methods for different security levels by easily splitting or assembling the proposed three-factor authentication mechanism. Without a design of several different authentication protocols, our proposed scheme can improve the efficiency, service of quality and reduce the complexity of the entire 5G multi-service system. Performance analysis results show that our proposed scheme can ensure the security with ideal efficiency.
With all data services of cloud, it's not only stored the data, although shared the data among the multiple users or clients, which make doubt in its integrity due to the existence of software/hardware error along with human error too. There is an existence of several mechanisms to allow data holders and public verifiers to precisely, efficiently and effectively audit integrity of cloud data without accessing the whole data from server. After all, public auditing on the integrity of shared data with pervious extant mechanisms will somehow affirm the confidential information and its identity privacy to the public verifiers. In this paper, to achieve the privacy preserving public for auditing, we intended an explanation for TPA using three way handshaking protocol through the Extensible Authentication Protocol (EAP) with liberated encryption standard. Appropriately, from the cloud, we use the VerifyProof execute by TPA to audit to certify. In addition to this mechanism, the identity of each segment in the shared data is kept private from the public verifiers. Moreover, rather than verifying the auditing task one by one, this will capable to perform, the various auditing tasks simultaneously.
Wireless network, whether it's ad-hoc or at enterprise level is vulnerable due to its features of open medium, and usually due to weak authentication, authorization, encryption, monitoring and accounting mechanisms. Various wireless vulnerability situations as well as the minimal features that are required in order to protect, monitor, account, authenticate, and authorize nodes, users, computers into the network are examined. Also, aspects of several IEEE Security Standards, which were ratified and which are still in draft are described.
Internet into our physical world and making it present everywhere. This evolution is also raising challenges in issues such as privacy, and security. For that reason, this work is focused on the integration and lightweight adaptation of existing authentication protocols, which are able also to offer authorization and access control functionalities. In particular, this work is focused on the Extensible Authentication Protocol (EAP). EAP is widely used protocol for access control in local area networks such Wireless (802.11) and wired (802.3). This work presents an integration of the EAP frame into IEEE 802.15.4 frames, demonstrating that EAP protocol and some of its mechanisms are feasible to be applied in constrained devices, such as the devices that are populating the IoT networks.