Visible to the public Biblio

Filters: Keyword is AI methods  [Clear All Filters]
2021-03-01
Tan, R., Khan, N., Guan, L..  2020.  Locality Guided Neural Networks for Explainable Artificial Intelligence. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
In current deep network architectures, deeper layers in networks tend to contain hundreds of independent neurons which makes it hard for humans to understand how they interact with each other. By organizing the neurons by correlation, humans can observe how clusters of neighbouring neurons interact with each other. In this paper, we propose a novel algorithm for back propagation, called Locality Guided Neural Network (LGNN) for training networks that preserves locality between neighbouring neurons within each layer of a deep network. Heavily motivated by Self-Organizing Map (SOM), the goal is to enforce a local topology on each layer of a deep network such that neighbouring neurons are highly correlated with each other. This method contributes to the domain of Explainable Artificial Intelligence (XAI), which aims to alleviate the black-box nature of current AI methods and make them understandable by humans. Our method aims to achieve XAI in deep learning without changing the structure of current models nor requiring any post processing. This paper focuses on Convolutional Neural Networks (CNNs), but can theoretically be applied to any type of deep learning architecture. In our experiments, we train various VGG and Wide ResNet (WRN) networks for image classification on CIFAR100. In depth analyses presenting both qualitative and quantitative results demonstrate that our method is capable of enforcing a topology on each layer while achieving a small increase in classification accuracy.
2021-02-23
Chen, W., Cao, H., Lv, X., Cao, Y..  2020.  A Hybrid Feature Extraction Network for Intrusion Detection Based on Global Attention Mechanism. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :481—485.
The widespread application of 5G will make intrusion detection of large-scale network traffic a mere need. However, traditional intrusion detection cannot meet the requirements by manually extracting features, and the existing AI methods are also relatively inefficient. Therefore, when performing intrusion detection tasks, they have significant disadvantages of high false alarm rates and low recognition performance. For this challenge, this paper proposes a novel hybrid network, RULA-IDS, which can perform intrusion detection tasks by great amount statistical data from the network monitoring system. RULA-IDS consists of the fully connected layer, the feature extraction layer, the global attention mechanism layer and the SVM classification layer. In the feature extraction layer, the residual U-Net and LSTM are used to extract the spatial and temporal features of the network traffic attributes. It is worth noting that we modified the structure of U-Net to suit the intrusion detection task. The global attention mechanism layer is then used to selectively retain important information from a large number of features and focus on those. Finally, the SVM is used as a classifier to output results. The experimental results show that our method outperforms existing state-of-the-art intrusion detection methods, and the accuracies of training and testing are improved to 97.01% and 98.19%, respectively, and presents stronger robustness during training and testing.
2020-08-07
Ramezanian, Sara, Niemi, Valtteri.  2019.  Privacy Preserving Cyberbullying Prevention with AI Methods in 5G Networks. 2019 25th Conference of Open Innovations Association (FRUCT). :265—271.
Children and teenagers that have been a victim of bullying can possibly suffer its psychological effects for a lifetime. With the increase of online social media, cyberbullying incidents have been increased as well. In this paper we discuss how we can detect cyberbullying with AI techniques, using term frequency-inverse document frequency. We label messages as benign or bully. We want our method of cyberbullying detection to be privacy-preserving, such that the subscribers' benign messages should not be revealed to the operator. Moreover, the operator labels subscribers as normal, bully and victim. The operator utilizes policy control in 5G networks, to protect victims of cyberbullying from harmful traffic.