Biblio
In this paper, we apply verifiable computing techniques to a biometric matching. The purpose of verifiable computation is to give the result of a computation along with a proof that the calculations were correctly performed. We adapt a protocol called sumcheck protocol and present a system that performs verifiable biometric matching in the case of a fast border control. This is a work in progress and we focus on verifying an inner product. We then give some experimental results of its implementation. Verifiable computation here helps to enforce the authentication phase bringing in the process a proof that the biometric verification has been correctly performed.
Conventional security methods like password and ID card methods are now rapidly replacing by biometrics for identification of a person. Biometrics uses physiological or behavioral characteristics of a person. Usage of biometric raises critical privacy and security concerns that, due to the noisy nature of biometrics, cannot be addressed using standard cryptographic methods. The loss of an enrollment biometric to an attacker is a security hazard because it may allow the attacker to get an unauthorized access to the system. Biometric template can be stolen and intruder can get access of biometric system using fake input. Hence, it becomes essential to design biometric system with secure template or if the biometric template in an application is compromised, the biometric signal itself is not lost forever and a new biometric template can be issued. One way is to combine the biometrics and cryptography or use transformed data instead of original biometric template. But traditional cryptography methods are not useful in biometrics because of intra-class variation. Biometric cryptosystem can apply fuzzy vault, fuzzy commitment, helper data and secure sketch, whereas, cancelable biometrics uses distorting transforms, Bio-Hashing, and Bio-Encoding techniques. In this paper, biometric cryptosystem is presented with fuzzy vault and fuzzy commitment techniques for fingerprint recognition system.
Biometric authentication schemes are frequently used to establish the identity of a user. Often, a trusted hardware device is used to decide if a provided biometric feature is sufficiently close to the features stored by the legitimate user during enrollment. In this paper, we address the question whether the stored features can be extracted with side-channel attacks. We consider several models for types of leakage that are relevant specifically for fingerprint verification, and show results for attacks against the Bozorth3 and a custom matching algorithm. This work shows an interesting path for future research on the susceptibility of biometric algorithms towards side-channel attacks.
Internet of Things (IoT) have been connecting the physical world seamlessly and provides tremendous opportunities to a wide range of applications. However, potential risks exist when IoT system collects local sensor data and uploads to the Cloud. The private data leakage can be severe with curious database administrator or malicious hackers who compromise the Cloud. In this demo, we solve this problem of guaranteeing the user data privacy and security using compressive sensing based cryptographic method. We present CScrypt, a compressive-sensing-based encryption engine for the Cloud-enabled IoT systems to secure the interaction between the IoT devices and the Cloud. Our system exploits the fact that each individual's biometric data can be trained to a unique dictionary which can be used as an encryption key meanwhile to compress the original data. We will demonstrate a functioning prototype of our system using live data stream when attending the conference.
Biometric is uses to identify authorized person based on specific physiological or behavioral features. Template protection is a crucial requirement when designing an authentication system, where the template could be modified by attacker. Hill Cipher is a block cipher and symmetric key algorithm it has several advantages such as simplicity, high speed and high throughput can be used to protect Biometric Template. Unfortunately, Hill Cipher has some disadvantages such as takes smaller sizes of blocks, very simple and vulnerable for exhaustive key search attack and known plain text attack, also the key matrix which entered should be invertible. This paper proposed an enhancement to overcome these drawbacks of Hill Cipher by using a large and random key with large data block, beside overcome the Invertible-key Matrix problem. The efficiency of encryption has been checked out by Normalized Correlation Coefficient (NCC) and running time.
Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.
India being digitized through digital India, the most basic unique identity for each individual is biometrics. Since India is the second most populous nation, the database that has to be maintained is surplus. Shielding those information by using the present techniques has been questioned. This contravene problem can be overcome by using cryptographic algorithms in accumulation to biometrics. Hence proposed system is developed by combining multimodal biometric (Fingerprint, Retina, Finger vein) with cryptographic algorithm with Genuine Acceptance Rate of 94%, False Acceptance Rate of 1.46%, and False Rejection Rate of 1.07%.
Now a days, ATM is used for money transaction for the convenience of the user by providing round the clock 24*7 services in financial transaction. Bank provides the Debit or Credit card to its user along with particular PIN number (which is only known by the Bank and User). Sometimes, user's card may be stolen by someone and this person can access all confidential information as Credit card number, Card holder name, Expiry date and CVV number through which he/she can complete fake transaction. In this paper, we introduced the biometric encryption of "EYE RETINA" to enhance the security over the wireless and unreliable network as internet. In this method user can authorizeasthird person his/her behalf to make the transaction using Debit or Credit card. In proposed method, third person can also perform financial transaction by providing his/her eye retina for the authorization & identification purpose.
In recent years, simple password-based authentication systems have increasingly proven ineffective for many classes of real-world devices. As a result, many researchers have concentrated their efforts on the design of new biometric authentication systems. This trend has been further accelerated by the advent of mobile devices, which offer numerous sensors and capabilities to implement a variety of mobile biometric authentication systems. Along with the advances in biometric authentication, however, attacks have also become much more sophisticated and many biometric techniques have ultimately proven inadequate in face of advanced attackers in practice. In this paper, we investigate the effectiveness of sensor-enhanced keystroke dynamics, a recent mobile biometric authentication mechanism that combines a particularly rich set of features. In our analysis, we consider different types of attacks, with a focus on advanced attacks that draw from general population statistics. Such attacks have already been proven effective in drastically reducing the accuracy of many state-of-the-art biometric authentication systems. We implemented a statistical attack against sensor-enhanced keystroke dynamics and evaluated its impact on detection accuracy. On one hand, our results show that sensor-enhanced keystroke dynamics are generally robust against statistical attacks with a marginal equal-error rate impact (textless0.14%). On the other hand, our results show that, surprisingly, keystroke timing features non-trivially weaken the security guarantees provided by sensor features alone. Our findings suggest that sensor dynamics may be a stronger biometric authentication mechanism against recently proposed practical attacks.
The Internet of Things (IoT) is a design implementation of embedded system design that connects a variety of devices, sensors, and physical objects to a larger connected network (e.g. the Internet) which requires human-to-human or human-to-computer interaction. While the IoT is expected to expand the user's connectivity and everyday convenience, there are serious security considerations that come into account when using the IoT for distributed authentication. Furthermore the incorporation of biometrics to IoT design brings about concerns of cost and implementing a 'user-friendly' design. In this paper, we focus on the use of electrocardiogram (ECG) signals to implement distributed biometrics authentication within an IoT system model. Our observations show that ECG biometrics are highly reliable, more secure, and easier to implement than other biometrics.
An identity authentication scheme is proposed combining with biometric encryption, public key cryptography of homomorphism and predicate encryption technology under the cloud computing environment. Identity authentication scheme is proposed based on the voice and homomorphism technology. The scheme is divided into four stages, register and training template stage, voice login and authentication stage, authorization stage, and audit stage. The results prove the scheme has certain advantages in four aspects.
- « first
- ‹ previous
- 1
- 2
- 3