Visible to the public Biblio

Filters: Keyword is information interaction  [Clear All Filters]
2022-09-16
Mukeshimana, C., Kupriyanov, M. S..  2021.  Adaptive Neuro-fuzzy System (ANFIS) of Information Interaction in Industrial Internet of Things Networks Taking into Account Load Balancing. 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT). :43—46.
The main aim of the Internet of things is to improve the safety of the device through inter-Device communication (IDC). Various applications are emerging in Internet of things. Various aspects of Internet of things differ from Internet of things, especially the nodes have more velocity which causes the topology to change rapidly. The requirement of researches in the concept of Internet of things increases rapidly because Internet of things face many challenges on the security, protocols and technology. Despite the fact that the problem of organizing the interaction of IIoT devices has already attracted a lot of attention from many researchers, current research on routing in IIoT cannot effectively solve the problem of data exchange in a self-adaptive and self-organized way, because the number of connected devices is quite large. In this article, an adaptive neuro-fuzzy clustering algorithm is presented for the uniform distribution of load between interacting nodes. We synthesized fuzzy logic and neural network to balance the choice of the optimal number of cluster heads and uniform load distribution between sensors. Comparison is made with other load balancing methods in such wireless sensor networks.
2022-07-15
Luo, Yun, Chen, Yuling, Li, Tao, Wang, Yilei, Yang, Yixian.  2021.  Using information entropy to analyze secure multi-party computation protocol. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :312—318.

Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.

2021-08-11
Liu, Ming, Ma, Lu, Li, Chao, Li, Ruiguang.  2020.  Fortified Network Security Perception: A Decentralized Multiagent Coordination Perspective. 2020 IEEE 3rd International Conference on Electronics Technology (ICET). :746–750.
The essence of network security is the asymmetric online confrontation with the partial observable cyber threats, which requires the defense ability against unexpected security incidents. The existing network intrusion detection systems are mostly static centralized structure, and usually faced with problems such as high pressure of central processing node, low fault tolerance, low damage resistance and high construction cost. In this paper, exploiting the advantage of collaborative decision-making of decentralized multiagent coordination, we design a collaborative cyber threat perception model, DI-MDPs, which is based on the decentralized coordination, and the core idea is initiative information interaction among agents. Then, we analysis the relevance and transformation conditions between the proposed model, then contribute a reinforcement learning algorithm HTI that takes advantage of the particular structure of DI-MDPs in which agent updates policies by learning both its local cognition and the additional information obtained through interaction. Finally, we compare and verify the performance of the designed algorithm under typical scenario setting.
2020-08-10
Wu, Zhengze, Zhang, Xiaohong, Zhong, Xiaoyong.  2019.  Generalized Chaos Synchronization Circuit Simulation and Asymmetric Image Encryption. IEEE Access. 7:37989–38008.
Generalized chaos systems have more complex dynamic behavior than conventional chaos systems. If a generalized response system can be synchronized with a conventional drive system, the flexible control parameters and unpredictable synchronization state will increase significantly. The study first constructs a four-dimensional nonlinear dynamic equation with quadratic variables as a drive system. The numerical simulation and analyses of the Lyapunov exponent show that it is also a chaotic system. Based on the generalized chaos synchronization (GCS) theory, a four-dimensional diffeomorphism function is designed, and the corresponding GCS response system is generated. Simultaneously, the structural and synchronous circuits of information interaction and control are constructed with Multisim™ software, with the circuit simulation resulting in a good agreement with the numerical calculations. In order to verify the practical effect of generalized synchronization, an RGB digital image secure communication scheme is proposed. We confuse a 24-bit true color image with the designed GCS system, extend the original image to 48-bits, analyze the scheme security from keyspace, key sensitivity and non-symmetric identity authentication, classical types of attacks, and statistical average from the histogram, image correlation. The research results show that this GCS system is simple and feasible, and the encryption algorithm is closely related to the confidential information, which can resist the differential attack. The scheme is suitable to be applied in network images or other multimedia safe communications.