Visible to the public Biblio

Filters: Keyword is benchmark datasets  [Clear All Filters]
2020-08-28
Jafariakinabad, Fereshteh, Hua, Kien A..  2019.  Style-Aware Neural Model with Application in Authorship Attribution. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :325—328.

Writing style is a combination of consistent decisions associated with a specific author at different levels of language production, including lexical, syntactic, and structural. In this paper, we introduce a style-aware neural model to encode document information from three stylistic levels and evaluate it in the domain of authorship attribution. First, we propose a simple way to jointly encode syntactic and lexical representations of sentences. Subsequently, we employ an attention-based hierarchical neural network to encode the syntactic and semantic structure of sentences in documents while rewarding the sentences which contribute more to capturing the writing style. Our experimental results, based on four benchmark datasets, reveal the benefits of encoding document information from all three stylistic levels when compared to the baseline methods in the literature.