Biblio
Chang-Chen-Wang's (3,n) Secret grayscale image Sharing between n grayscale cover images method with participant Authentication and damaged pixels Repairing (SSAR) properties is analyzed; it restores the secret image from any three of the cover images used. We show that SSAR may fail, is not able fake participant recognizing, and has limited by 62.5% repairing ability. We propose SSAR (4,n) enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel using any four of n covers, and recognizing a fake participant with the help of cryptographic hash functions with 5-bit values that allows better (vs. 4 bits) error detection. Using a special permutation with only one loop including all the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels having just one correct pixel left. SSAR-E allows restoring the secret image to authorized parties only contrary to SSAR. The performance and size of cover images for SSAR-E are the same as for SSAR.
Chang-Chen-Wang's (3,n) Secret grayscale image Sharing between n grayscale cover images method with participant Authentication and damaged pixels Repairing (SSAR) properties is analyzed; it restores the secret image from any three of the cover images used. We show that SSAR may fail, is not able fake participant recognizing, and has limited by 62.5% repairing ability. We propose SSAR (4,n) enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel using any four of n covers, and recognizing a fake participant with the help of cryptographic hash functions with 5-bit values that allows better (vs. 4 bits) error detection. Using a special permutation with only one loop including all the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels having just one correct pixel left. SSAR-E allows restoring the secret image to authorized parties only contrary to SSAR. The performance and size of cover images for SSAR-E are the same as for SSAR.
Visual cryptography is a way to encrypt the secret image into several meaningless share images. Noted that no information can be obtained if not all of the shares are collected. Stacking the share images, the secret image can be retrieved. The share images are meaningless to owner which results in difficult to manage. Tagged visual cryptography is a skill to print a pattern onto meaningless share images. After that, users can easily manage their own share images according to the printed pattern. Besides, access control is another popular topic to allow a user or a group to see the own authorizations. In this paper, a self-authentication mechanism with lossless construction ability for image secret sharing scheme is proposed. The experiments provide the positive data to show the feasibility of the proposed scheme.