Biblio
Reconfigurable Scan Networks (RSNs) are a powerful tool for testing and maintenance of embedded systems, since they allow for flexible access to on-chip instrumentation such as built-in self-test and debug modules. RSNs, however, can be also exploited by malicious users as a side-channel in order to gain information about sensitive data or intellectual property and to recover secret keys. Hence, implementing appropriate counter-measures to secure the access to and data integrity of embedded instrumentation is of high importance. In this paper we present a novel hardware and software combined approach to ensure data privacy in IEEE Std 1687 (IJTAG) RSNs. To do so, both a secure IJTAG compliant plug-and-play instrument wrapper and a versatile software toolchain are introduced. The wrapper demonstrates the necessary architectural adaptations required when using a lightweight stream cipher, whereas the software toolchain provides a seamless integration of the testing workflow with stream cipher. The applicability of the method is demonstrated by an FPGA-based implementation. We report on the performance of the developed instrument wrapper, which is empirically shown to have only a small impact on the workflow in terms of hardware overhead, operational costs and test time overhead.
The Internet of Things is a vision that broadens the scope of the internet by incorporating physical objects to identify themselves to the participating entities. This innovative concept enables a physical device to represent itself in the digital world. There are a lot of speculations and future forecasts about the Internet of Things devices. However, most of them are vendor specific and lack a unified standard, which renders their seamless integration and interoperable operations. Another major concern is the lack of security features in these devices and their corresponding products. Most of them are resource-starved and unable to support computationally complex and resource consuming secure algorithms. In this paper, we have proposed a lightweight mutual authentication scheme which validates the identities of the participating devices before engaging them in communication for the resource observation. Our scheme incurs less connection overhead and provides a robust defence solution to combat various types of attacks.