Visible to the public Biblio

Filters: Keyword is malicious software  [Clear All Filters]
2021-04-09
Usman, S., Winarno, I., Sudarsono, A..  2020.  Implementation of SDN-based IDS to protect Virtualization Server against HTTP DoS attacks. 2020 International Electronics Symposium (IES). :195—198.
Virtualization and Software-defined Networking (SDN) are emerging technologies that play a major role in cloud computing. Cloud computing provides efficient utilization, high performance, and resource availability on demand. However, virtualization environments are vulnerable to various types of intrusion attacks that involve installing malicious software and denial of services (DoS) attacks. Utilizing SDN technology, makes the idea of SDN-based security applications attractive in the fight against DoS attacks. Network intrusion detection system (IDS) which is used to perform network traffic analysis as a detection system implemented on SDN networks to protect virtualization servers from HTTP DoS attacks. The experimental results show that SDN-based IDS is able to detect and mitigate HTTP DoS attacks effectively.
2021-03-09
Memos, V. A., Psannis, K. E..  2020.  AI-Powered Honeypots for Enhanced IoT Botnet Detection. 2020 3rd World Symposium on Communication Engineering (WSCE). :64—68.

Internet of Things (IoT) is a revolutionary expandable network which has brought many advantages, improving the Quality of Life (QoL) of individuals. However, IoT carries dangers, due to the fact that hackers have the ability to find security gaps in users' IoT devices, which are not still secure enough and hence, intrude into them for malicious activities. As a result, they can control many connected devices in an IoT network, turning IoT into Botnet of Things (BoT). In a botnet, hackers can launch several types of attacks, such as the well known attacks of Distributed Denial of Service (DDoS) and Man in the Middle (MitM), and/or spread various types of malicious software (malware) to the compromised devices of the IoT network. In this paper, we propose a novel hybrid Artificial Intelligence (AI)-powered honeynet for enhanced IoT botnet detection rate with the use of Cloud Computing (CC). This upcoming security mechanism makes use of Machine Learning (ML) techniques like the Logistic Regression (LR) in order to predict potential botnet existence. It can also be adopted by other conventional security architectures in order to intercept hackers the creation of large botnets for malicious actions.

2020-10-26
Leach, Kevin, Dougherty, Ryan, Spensky, Chad, Forrest, Stephanie, Weimer, Westley.  2019.  Evolutionary Computation for Improving Malware Analysis. 2019 IEEE/ACM International Workshop on Genetic Improvement (GI). :18–19.
Research in genetic improvement (GI) conventionally focuses on the improvement of software, including the automated repair of bugs and vulnerabilities as well as the refinement of software to increase performance. Eliminating or reducing vulnerabilities using GI has improved the security of benign software, but the growing volume and complexity of malicious software necessitates better analysis techniques that may benefit from a GI-based approach. Rather than focus on the use of GI to improve individual software artifacts, we believe GI can be applied to the tools used to analyze malicious code for its behavior. First, malware analysis is critical to understanding the damage caused by an attacker, which GI-based bug repair does not currently address. Second, modern malware samples leverage complex vectors for infection that cannot currently be addressed by GI. In this paper, we discuss an application of genetic improvement to the realm of automated malware analysis through the use of variable-strength covering arrays.
Clincy, Victor, Shahriar, Hossain.  2019.  IoT Malware Analysis. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:920–921.
IoT devices can be used to fulfil many of our daily tasks. IoT could be wearable devices, home appliances, or even light bulbs. With the introduction of this new technology, however, vulnerabilities are being introduced and can be leveraged or exploited by malicious users. One common vehicle of exploitation is malicious software, or malware. Malware can be extremely harmful and compromise the confidentiality, integrity and availability (CIA triad) of information systems. This paper analyzes the types of malware attacks, introduce some mitigation approaches and discusses future challenges.
Walker, Aaron, Sengupta, Shamik.  2019.  Insights into Malware Detection via Behavioral Frequency Analysis Using Machine Learning. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
The most common defenses against malware threats involves the use of signatures derived from instances of known malware. However, the constant evolution of the malware threat landscape necessitates defense against unknown malware, making a signature catalog of known threats insufficient to prevent zero-day vulnerabilities from being exploited. Recent research has applied machine learning approaches to identify malware through artifacts of malicious activity as observed through dynamic behavioral analysis. We have seen that these approaches mimic common malware defenses by simply offering a method of detecting known malware. We contribute a new method of identifying software as malicious or benign through analysis of the frequency of Windows API system function calls. We show that this is a powerful technique for malware detection because it generates learning models which understand the difference between malicious and benign software, rather than producing a malware signature classifier. We contribute a method of systematically comparing machine learning models against different datasets to determine their efficacy in accurately distinguishing the difference between malicious and benign software.
2020-08-07
Zhu, Weijun, Liu, Yichen, Fan, Yongwen, Liu, Yang, Liu, Ruitong.  2019.  If Air-Gap Attacks Encounter the Mimic Defense. 2019 9th International Conference on Information Science and Technology (ICIST). :485—490.
Air-gap attacks and mimic defense are two emerging techniques in the field of network attack and defense, respectively. However, direct confrontation between them has not yet appeared in the real world. Who will be the winner, if air-gap attacks encounter mimic defense? To this end, a preliminary analysis is conducted for exploring the possible the strategy space of game according to the core principles of air-gap attacks and mimic defense. On this basis, an architecture model is proposed, which combines some detectors for air-gap attacks and mimic defense devices. First, a Dynamic Heterogeneous Redundancy (DHR) structure is employed to be on guard against malicious software of air-gap attacks. Second, some detectors for air-gap attacks are used to detect some signal sent by air-gap attackers' transmitter. Third, the proposed architecture model is obtained by organizing the DHR structure and the detectors for air-gap attacks with some logical relationship. The simulated experimental results preliminarily confirm the power of the new model.
2020-07-10
Javed Butt, Usman, Abbod, Maysam, Lors, Anzor, Jahankhani, Hamid, Jamal, Arshad, Kumar, Arvind.  2019.  Ransomware Threat and its Impact on SCADA. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :205—212.
Modern cybercrimes have exponentially grown over the last one decade. Ransomware is one of the types of malware which is the result of sophisticated attempt to compromise the modern computer systems. The governments and large corporations are investing heavily to combat this cyber threat against their critical infrastructure. It has been observed that over the last few years that Industrial Control Systems (ICS) have become the main target of Ransomware due to the sensitive operations involved in the day to day processes of these industries. As the technology is evolving, more and more traditional industrial systems are replaced with advanced industry methods involving advanced technologies such as Internet of Things (IoT). These technology shift help improve business productivity and keep the company's global competitive in an overflowing competitive market. However, the systems involved need secure measures to protect integrity and availability which will help avoid any malfunctioning to their operations due to the cyber-attacks. There have been several cyber-attack incidents on healthcare, pharmaceutical, water cleaning and energy sector. These ICS' s are operated by remote control facilities and variety of other devices such as programmable logic controllers (PLC) and sensors to make a network. Cyber criminals are exploring vulnerabilities in the design of these ICS's to take the command and control of these systems and disrupt daily operations until ransomware is paid. This paper will provide critical analysis of the impact of Ransomware threat on SCADA systems.
2020-03-27
Walker, Aaron, Amjad, Muhammad Faisal, Sengupta, Shamik.  2019.  Cuckoo’s Malware Threat Scoring and Classification: Friend or Foe? 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0678–0684.
Malware threat classification involves understanding the behavior of the malicious software and how it affects a victim host system. Classifying threats allows for measured response appropriate to the risk involved. Malware incident response depends on many automated tools for the classification of threat to help identify the appropriate reaction to a threat alert. Cuckoo Sandbox is one such tool which can be used for automated analysis of malware and one method of threat classification provided is a threat score. A security analyst might submit a suspicious file to Cuckoo for analysis to determine whether or not the file contains malware or performs potentially malicious behavior on a system. Cuckoo is capable of producing a report of this behavior and ranks the severity of the observed actions as a score from one to ten, with ten being the most severe. As such, a malware sample classified as an 8 would likely take priority over a sample classified as a 3. Unfortunately, this scoring classification can be misleading due to the underlying methodology of severity classification. In this paper we demonstrate why the current methodology of threat scoring is flawed and therefore we believe it can be improved with greater emphasis on analyzing the behavior of the malware. This allows for a threat classification rating which scales with the risk involved in the malware behavior.
2019-10-07
Agrawal, R., Stokes, J. W., Selvaraj, K., Marinescu, M..  2019.  Attention in Recurrent Neural Networks for Ransomware Detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3222–3226.

Ransomware, as a specialized form of malicious software, has recently emerged as a major threat in computer security. With an ability to lock out user access to their content, recent ransomware attacks have caused severe impact at an individual and organizational level. While research in malware detection can be adapted directly for ransomware, specific structural properties of ransomware can further improve the quality of detection. In this paper, we adapt the deep learning methods used in malware detection for detecting ransomware from emulation sequences. We present specialized recurrent neural networks for capturing local event patterns in ransomware sequences using the concept of attention mechanisms. We demonstrate the performance of enhanced LSTM models on a sequence dataset derived by the emulation of ransomware executables targeting the Windows environment.

2019-06-10
Udayakumar, N., Saglani, V. J., Cupta, A. V., Subbulakshmi, T..  2018.  Malware Classification Using Machine Learning Algorithms. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1-9.

Lately, we are facing the Malware crisis due to various types of malware or malicious programs or scripts available in the huge virtual world - the Internet. But, what is malware? Malware can be a malicious software or a program or a script which can be harmful to the user's computer. These malicious programs can perform a variety of functions, including stealing, encrypting or deleting sensitive data, altering or hijacking core computing functions and monitoring users' computer activity without their permission. There are various entry points for these programs and scripts in the user environment, but only one way to remove them is to find them and kick them out of the system which isn't an easy job as these small piece of script or code can be anywhere in the user system. This paper involves the understanding of different types of malware and how we will use Machine Learning to detect these malwares.

Kim, C. H., Kabanga, E. K., Kang, S..  2018.  Classifying Malware Using Convolutional Gated Neural Network. 2018 20th International Conference on Advanced Communication Technology (ICACT). :40-44.

Malware or Malicious Software, are an important threat to information technology society. Deep Neural Network has been recently achieving a great performance for the tasks of malware detection and classification. In this paper, we propose a convolutional gated recurrent neural network model that is capable of classifying malware to their respective families. The model is applied to a set of malware divided into 9 different families and that have been proposed during the Microsoft Malware Classification Challenge in 2015. The model shows an accuracy of 92.6% on the available dataset.

2017-03-07
Burnap, P., Javed, A., Rana, O. F., Awan, M. S..  2015.  Real-time classification of malicious URLs on Twitter using machine activity data. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :970–977.

Massive online social networks with hundreds of millions of active users are increasingly being used by Cyber criminals to spread malicious software (malware) to exploit vulnerabilities on the machines of users for personal gain. Twitter is particularly susceptible to such activity as, with its 140 character limit, it is common for people to include URLs in their tweets to link to more detailed information, evidence, news reports and so on. URLs are often shortened so the endpoint is not obvious before a person clicks the link. Cyber criminals can exploit this to propagate malicious URLs on Twitter, for which the endpoint is a malicious server that performs unwanted actions on the person's machine. This is known as a drive-by-download. In this paper we develop a machine classification system to distinguish between malicious and benign URLs within seconds of the URL being clicked (i.e. `real-time'). We train the classifier using machine activity logs created while interacting with URLs extracted from Twitter data collected during a large global event - the Superbowl - and test it using data from another large sporting event - the Cricket World Cup. The results show that machine activity logs produce precision performances of up to 0.975 on training data from the first event and 0.747 on a test data from a second event. Furthermore, we examine the properties of the learned model to explain the relationship between machine activity and malicious software behaviour, and build a learning curve for the classifier to illustrate that very small samples of training data can be used with only a small detriment to performance.

2015-05-05
Min Li, Xin Lv, Wei Song, Wenhuan Zhou, Rongzhi Qi, Huaizhi Su.  2014.  A Novel Identity Authentication Scheme of Wireless Mesh Network Based on Improved Kerberos Protocol. Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2014 13th International Symposium on. :190-194.

The traditional Kerberos protocol exists some limitations in achieving clock synchronization and storing key, meanwhile, it is vulnerable from password guessing attack and attacks caused by malicious software. In this paper, a new authentication scheme is proposed for wireless mesh network. By utilizing public key encryption techniques, the security of the proposed scheme is enhanced. Besides, timestamp in the traditional protocol is replaced by random numbers to implementation cost. The analysis shows that the improved authentication protocol is fit for wireless Mesh network, which can make identity authentication more secure and efficient.